654 research outputs found

    Flexible Indexing of Repetitive Collections

    Get PDF
    Highly repetitive strings are increasingly being amassed by genome sequencing experiments, and by versioned archives of source code and webpages. We describe practical data structures that support counting and locating all the exact occurrences of a pattern in a repetitive text, by combining the run-length encoded Burrows-Wheeler transform (RLBWT) with the boundaries of Lempel-Ziv 77 factors. One such variant uses an amount of space comparable to LZ77 indexes, but it answers count queries between two and four orders of magnitude faster than all LZ77 and hybrid index implementations, at the cost of slower locate queries. Combining the RLBWT with the compact directed acyclic word graph answers locate queries for short patterns between four and ten times faster than a version of the run-length compressed suffix array (RLCSA) that uses comparable memory, and with very short patterns our index achieves speedups even greater than ten with respect to RLCSA

    Efficient approximate string matching techniques for sequence alignment

    Get PDF
    One of the outstanding milestones achieved in recent years in the field of biotechnology research has been the development of high-throughput sequencing (HTS). Due to the fact that at the moment it is technically impossible to decode the genome as a whole, HTS technologies read billions of relatively short chunks of a genome at random locations. Such reads then need to be located within a reference for the species being studied (that is aligned or mapped to the genome): for each read one identifies in the reference regions that share a large sequence similarity with it, therefore indicating what the read¿s point or points of origin may be. HTS technologies are able to re-sequence a human individual (i.e. to establish the differences between his/her individual genome and the reference genome for the human species) in a very short period of time. They have also paved the way for the development of a number of new protocols and methods, leading to novel insights in genomics and biology in general. However, HTS technologies also pose a challenge to traditional data analysis methods; this is due to the sheer amount of data to be processed and the need for improved alignment algorithms that can generate accurate results quickly. This thesis tackles the problem of sequence alignment as a step within the analysis of HTS data. Its contributions focus on both the methodological aspects and the algorithmic challenges towards efficient, scalable, and accurate HTS mapping. From a methodological standpoint, this thesis strives to establish a comprehensive framework able to assess the quality of HTS mapping results. In order to be able to do so one has to understand the source and nature of mapping conflicts, and explore the accuracy limits inherent in how sequence alignment is performed for current HTS technologies. From an algorithmic standpoint, this work introduces state-of-the-art index structures and approximate string matching algorithms. They contribute novel insights that can be used in practical applications towards efficient and accurate read mapping. More in detail, first we present methods able to reduce the storage space taken by indexes for genome-scale references, while still providing fast query access in order to support effective search algorithms. Second, we describe novel filtering techniques that vastly reduce the computational requirements of sequence mapping, but are nonetheless capable of giving strict algorithmic guarantees on the completeness of the results. Finally, this thesis presents new incremental algorithmic techniques able to combine several approximate string matching algorithms; this leads to efficient and flexible search algorithms allowing the user to reach arbitrary search depths. All algorithms and methodological contributions of this thesis have been implemented as components of a production aligner, the GEM-mapper, which is publicly available, widely used worldwide and cited by a sizeable body of literature. It offers flexible and accurate sequence mapping while outperforming other HTS mappers both as to running time and to the quality of the results it produces.Uno de los avances más importantes de los últimos años en el campo de la biotecnología ha sido el desarrollo de las llamadas técnicas de secuenciación de alto rendimiento (high-throughput sequencing, HTS). Debido a las limitaciones técnicas para secuenciar un genoma, las técnicas de alto rendimiento secuencian individualmente billones de pequeñas partes del genoma provenientes de regiones aleatorias. Posteriormente, estas pequeñas secuencias han de ser localizadas en el genoma de referencia del organismo en cuestión. Este proceso se denomina alineamiento - o mapeado - y consiste en identificar aquellas regiones del genoma de referencia que comparten una alta similaridad con las lecturas producidas por el secuenciador. De esta manera, en cuestión de horas, la secuenciación de alto rendimiento puede secuenciar un individuo y establecer las diferencias de este con el resto de la especie. En última instancia, estas tecnologías han potenciado nuevos protocolos y metodologías de investigación con un profundo impacto en el campo de la genómica, la medicina y la biología en general. La secuenciación alto rendimiento, sin embargo, supone un reto para los procesos tradicionales de análisis de datos. Debido a la elevada cantidad de datos a analizar, se necesitan nuevas y mejoradas técnicas algorítmicas que puedan escalar con el volumen de datos y producir resultados precisos. Esta tesis aborda dicho problema. Las contribuciones que en ella se realizan se enfocan desde una perspectiva metodológica y otra algorítmica que propone el desarrollo de nuevos algoritmos y técnicas que permitan alinear secuencias de manera eficiente, precisa y escalable. Desde el punto de vista metodológico, esta tesis analiza y propone un marco de referencia para evaluar la calidad de los resultados del alineamiento de secuencias. Para ello, se analiza el origen de los conflictos durante la alineación de secuencias y se exploran los límites alcanzables en calidad con las tecnologías de secuenciación de alto rendimiento. Desde el punto de vista algorítmico, en el contexto de la búsqueda aproximada de patrones, esta tesis propone nuevas técnicas algorítmicas y de diseño de índices con el objetivo de mejorar la calidad y el desempeño de las herramientas dedicadas a alinear secuencias. En concreto, esta tesis presenta técnicas de diseño de índices genómicos enfocados a obtener un acceso más eficiente y escalable. También se presentan nuevas técnicas algorítmicas de filtrado con el fin de reducir el tiempo de ejecución necesario para alinear secuencias. Y, por último, se proponen algoritmos incrementales y técnicas híbridas para combinar métodos de alineamiento y mejorar el rendimiento en búsquedas donde el error esperado es alto. Todo ello sin degradar la calidad de los resultados y con garantías formales de precisión. Para concluir, es preciso apuntar que todos los algoritmos y metodologías propuestos en esta tesis están implementados y forman parte del alineador GEM. Este versátil alineador ofrece resultados de alta calidad en entornos de producción siendo varias veces más rápido que otros alineadores. En la actualidad este software se ofrece gratuitamente, tiene una amplia comunidad de usuarios y ha sido citado en numerosas publicaciones científicas.Postprint (published version

    A Novel Tree Structure for Pattern Matching in Biological Sequences

    Get PDF
    This dissertation proposes a novel tree structure, Error Tree (ET), to more efficiently solve the Approximate Pattern Matching problem, a fundamental problem in bioinformatics and information retrieval. The problem involves different matching measures such as the Hamming distance, edit distance, and wildcard matching. The input is usually a text of length n over a fixed alphabet of size Σ, a pattern P of length m, and an integer k. The output is those subsequences in the text that are at a distance ≤ k from P by Hamming distance, edit distance, or wildcard matching. An immediate application of the approximate pattern matching is the Planted Motif Search, an important problem in many biological applications such as finding promoters, enhancers, locus control regions, transcription factors, etc. The (l, d)-Planted Motif Search is defined as the following: Given n sequences over an alphabet of size Σ, each of length m, and two integers l and d, find a motif M of length l, where in each sequence there is at least an l-mer (substring of length l) at a Hamming distance of ≤ d from M. Based on the ET structure, our algorithm ET-Motif solves this problem efficiently in time and space. The thesis also discusses how the ET structure may add efficiency when it comes to Genome Assembly and DNA Sequence Compression. Current high-throughput sequencing technologies generate millions or billions of short reads (100-1000 bases) that are sequenced from a genome of millions or billions bases long. The De novo Genome Assembly problem is to assemble the original genome as long and accurate as possible. Although high quality assemblies can be obtained by assembling multiple paired-end libraries with both short and long insert sizes, the latter is costly to generate. Moreover, the recent GAGE-B study showed that a remarkably good assembly quality can be obtained for bacterial genomes by state-of-the-art assemblers run on a single short-insert library with a very high coverage. This thesis introduces a novel Hierarchical Genome Assembly (HGA) method that takes further advantage of such high coverage by independently assembling disjoint subsets of reads, combining assemblies of the subsets, and finally re-assembling the combined contigs along with the original reads. We empirically evaluate this methodology for eight leading assemblers using seven GAGE-B bacterial datasets consisting of 100bp Illumina HiSeq and 250bp Illumina MiSeq reads with coverage ranging from 100x-∼200x. The results show that HGA leads to a significant improvement in the quality of the assembly for all evaluated assemblers and datasets. Still, the problem involves a major step which is overlapping the ends of the reads together and allowing few mismatches (i.e. the approximate matching problem). This requires computing the overlaps between the ends of all-against-all reads. The computation of such overlaps when allowing mismatches is intensive. The ET structure may further speed up this step. Lastly, due to the significant amount of DNA data generated by the Next- Generation-Sequencing machines, there is an increasing need to compress such data to reduce the storage space and transmission time. The Huffman encoding that incorporates DNA sequence characteristics proves to better compress DNA data. Different implementations of Huffman trees, centering on the selection of frequent repeats, are introduced in this thesis. Experimental results demonstrate improvement on the compression ratios for five genomes with lengths ranging from 5Mbp to 50Mbp, compared with the use of a standard Huffman tree algorithm. Hence, the thesis suggests an improvement on all DNA sequence compression algorithms that employ the conventional Huffman encoding. Moreover, approximate repeats can be compressed and further improve the results by encoding the Hamming or edit distance between these repeats. However, computing such distances requires additional costs in both time and space. These costs can be reduced by using the ET structure
    • …
    corecore