865 research outputs found

    Non-Parallel Training in Voice Conversion Using an Adaptive Restricted Boltzmann Machine

    Get PDF
    In this paper, we present a voice conversion (VC) method that does not use any parallel data while training the model. VC is a technique where only speaker-specific information in source speech is converted while keeping the phonological information unchanged. Most of the existing VC methods rely on parallel data-pairs of speech data from the source and target speakers uttering the same sentences. However, the use of parallel data in training causes several problems: 1) the data used for the training are limited to the predefined sentences, 2) the trained model is only applied to the speaker pair used in the training, and 3) mismatches in alignment may occur. Although it is, thus, fairly preferable in VC not to use parallel data, a nonparallel approach is considered difficult to learn. In our approach, we achieve nonparallel training based on a speaker adaptation technique and capturing latent phonological information. This approach assumes that speech signals are produced from a restricted Boltzmann machine-based probabilistic model, where phonological information and speaker-related information are defined explicitly. Speaker-independent and speaker-dependent parameters are simultaneously trained under speaker adaptive training. In the conversion stage, a given speech signal is decomposed into phonological and speaker-related information, the speaker-related information is replaced with that of the desired speaker, and then voice-converted speech is obtained by mixing the two. Our experimental results showed that our approach outperformed another nonparallel approach, and produced results similar to those of the popular conventional Gaussian mixture models-based method that used parallel data in subjective and objective criteria

    SAS: A Speaker Verification Spoofing Database Containing Diverse Attacks

    Get PDF
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.This paper presents the first version of a speaker verification spoofing and anti-spoofing database, named SAS corpus. The corpus includes nine spoofing techniques, two of which are speech synthesis, and seven are voice conversion. We design two protocols, one for standard speaker verification evaluation, and the other for producing spoofing materials. Hence, they allow the speech synthesis community to produce spoofing materials incrementally without knowledge of speaker verification spoofing and anti-spoofing. To provide a set of preliminary results, we conducted speaker verification experiments using two state-of-the-art systems. Without any anti-spoofing techniques, the two systems are extremely vulnerable to the spoofing attacks implemented in our SAS corpus.EPSRC ; CAF ; TÜBİTA

    Anti-Spoofing for Text-Independent Speaker Verification: An Initial Database, Comparison of Countermeasures, and Human Performance

    Get PDF
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.In this paper, we present a systematic study of the vulnerability of automatic speaker verification to a diverse range of spoofing attacks. We start with a thorough analysis of the spoofing effects of five speech synthesis and eight voice conversion systems, and the vulnerability of three speaker verification systems under those attacks. We then introduce a number of countermeasures to prevent spoofing attacks from both known and unknown attackers. Known attackers are spoofing systems whose output was used to train the countermeasures, while an unknown attacker is a spoofing system whose output was not available to the countermeasures during training. Finally, we benchmark automatic systems against human performance on both speaker verification and spoofing detection tasks.EPSRC ; TÜBİTA
    corecore