173 research outputs found

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Detection of crustal uplift deformation in response to Glacier Wastage in southern Patagonia

    Get PDF
    The Southern Patagonian Icefield (SPI) is the largest continuous ice mass in the Southern Hemisphere outside Antarctica. It has been shrinking since the Little Ice Age (LIA) period, with increasing rates in recent years. An uplift of crustal deformation in response to this deglaciation process has been expected. The goal of this investigation is to analyze the crustal deformation caused by ice retreat using time-series data from continuous GPS stations (2015–2020) in the northern area of the SPI. For this purpose, we installed two continuous GPS stations on rocky nunataks of the SPI (the GRCS near Greve glacier and the GBCS close by Cerro Gorra Blanca). In addition, ice elevation changes (2000–2019) were analyzed by the co-registration of the SRTM digital elevation model and ICESat elevation data points. The results of the vertical components are positive (36.55 ± 2.58 mm a−1), with a maximum at GBCS, indicating the highest rate of crustal uplift ever continuously recorded in Patagonia; in addition, the mean horizontal velocities reached 11.7 mm a−1 with an azimuth of 43°. The negative ice elevation changes detected in the region have also accelerated in the recent two decades, with a median (Formula presented.) (elevation change) of −3.36 ± 0.01 m a−1 in the ablation zone. The seasonality of the GPS signals was contrasted with the water levels of the main Patagonian lakes around the SPI, detecting a complex interplay between them. Hence, the study sheds light on the knowledge of the crustal uplift as evidence of the wastage experienced by the SPI glaciers.Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Rivera, Andrés. Universidad de Chile.; ChileFil: Durand, Marcelo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Vacaflor, Paulina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Carbonetti, Micaela Alejandra. Ministerio de Defensa. Instituto Geografico Nacional; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Georreferenciación Satelitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Lannutti, Esteban Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Gende, Mauricio Alfredo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Georreferenciación Satelitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Lenzano, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentin

    Mitigation of Unmodeled Error to Improve the Accuracy of Multi-GNSS PPP for Crustal Deformation Monitoring

    Get PDF
    High-rate multi-constellation global navigation satellite system (GNSS) precise point positioning (PPP) has been recognized as an efficient and reliable technique for large earthquake monitoring. However, the displacements derived from PPP are often overwhelmed by the centimeter-level noise, therefore they are usually unable to detect slight deformations which could provide new findings for geophysics. In this paper, Global Positioning System (GPS), GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS), and BeiDou navigation satellite system (BDS) data collected during the 2017 Mw 6.5 Jiuzhaigou earthquake were used to further exploit the capability of BDS-only and multi-GNSS PPP in deformation monitoring by applying sidereal filtering (SF) in the observation domain. The equation that unifies the residuals for the uncombined and undifferenced (UCUD) PPP solution on different frequencies was derived, which could greatly reduce the complexity of data processing. An unanticipated long-term periodic error term of up to ± 3 cm was found in the phase residuals associated with BDS satellites in geostationary Earth orbit (GEO), which is not due to multipath originated from the ground but is in fact satellite dependent. The period of this error is mainly longer than 2000 s and cannot be alleviated by using multi-GNSS. Compared with solutions without sidereal filtering, the application of the SF approach dramatically improves the positioning precision with respect to the weekly averaged positioning solution, by 75.2%, 42.8%, and 56.7% to 2.00, 2.23, and 5.58 cm in the case of BDS-only PPP in the east, north, and up components, respectively, and 71.2%, 27.7%, and 37.9% to 1.25, 0.81, and 3.79 cm in the case of GPS/GLONASS/BDS combined PPP, respectively. The GPS/GLONASS/BDS combined solutions augmented by the SF successfully suppress the GNSS noise, which contributes to the detection of the true seismic signal and is beneficial to the pre- and post-seismic signal analysis

    The determination of subtle deformation signals using a permanent CGPS network in the Aegean

    Get PDF
    Geophysical motions can occur over a broad temporal spectrum, from high frequency seismic movements to very long period tectonic deformation. The Aegean region is tectonically one of the most active areas on Earth. There have, over the past 15 years, been a range of campaign style GPS studies which have looked to increase our knowledge of the area and better define the geodynamic processes involved. In 2002 the Center for the Observation and Modelling of Earthquakes and Tectonics (COMET) established a network of continuously operating GPS receivers (CGPS) throughout the region in order to add to the knowledge gained from previous studies. This thesis focuses on which tectonic motions can be observed using the COMET continuous GPS network. Approaches for the precise analytical estimation of subtle tectonic motion are presented. Daily coordinate estimates of COMET sites and a number of ITRF (International Terrestrial Reference Frame) sites around Europe were calculated using a precise point positioning strategy and ambiguity resolution using NASA’s GIPSY – OASIS II processing software and IGS (International GPS Service) precise products. Time series produced showed post fit standard deviations of 2-3 mm in the horizontal and 6-8 mm in the vertical. Significant annual periodic variation is observed in the time series. The coordinate time series studies were further refined using a selection of filters. Firstly, gross and sigma filters were applied to remove outliers, the data then had a range of regional filters applied looking to best define and remove the common mode error in the area. These filters produced mixed results with time series improvement occurring on a site by site basis. In some cases noise was reduced by a factor of 2 whilst in other cases there was little or no improvement. This combined with a lack of knowledge of the individual site movements led to the use of a filtered baseline method, whereby common mode error was removed purely on a site by site basis. This method revealed expansion across the Hellenic arc of the order of a few millimetres per year and sub millimetre north-south compaction behind the arc. It also revealed first evidence of transient motion at a number of sites parallel to the Hellenic arc. The transient signals occurred every 12 months ±1.5 and lasting for 40 – 100 days. These signals were not so much a reversal of tectonic motion akin to the silent earthquakes observed in Cascadia, Japan and Mexico, instead they appeared more as a pause in the otherwise consistent movement of the Aegean microplate overriding the subducting African lithosphere. In addition to the observed tectonic signals, the effects and implications of the two post processing strategies are analysed and discussed. Higher temporal frequency positioning is carried out on seismic events (Mw 6.7 earthquake Kithera, Mw 8.1 and Mw 6.7 earthquakes, Macquarie island) using instantaneous positioning followed by “sidereal filtering” whereby integer-cycle phase ambiguities are resolved using only single epochs of dual frequency phase and pseudorange data. These positions are then siderealy stacked to reduce the effects of geometry related error. The technique reduces geometry related noise by a factor ≈2 using epoch by epoch 30 second data. The feasibility of the technique for observing pre, co and post seismic signals is demonstrated. A visualisation tool was developed to allow the simultaneous observation of the tectonic motion of a CGPS network data over any spatial and temporal regimes

    Amélioration et désagrégation des données GRACE et GRACE-FO pour l’estimation des variations de stock d’eau terrestre et d’eau souterraine à fine échelle

    Get PDF
    Abstract : Groundwater is an essential natural resource for domestic, industrial and agricultural uses worldwide. Unfortunately, climate change, excess withdrawal, population growth and other human impacts can affect its dynamics and availability. These excessive demands can lead to lower groundwater levels and depletion of aquifers, and potentially to increased water scarcity. Despite the abundance of lakes and rivers in many parts of Canada, the potential depletion of groundwater remains a major concern, particularly in the southern Prairie. Groundwater is traditionally monitored through in-situ piezometric wells, which are scarcely distributed in Canada and many parts of the world. Consequently, its quantities, distribution and availability are not well known, both spatially and temporally. Fortunately, the launch of the twin satellite systems of Gravity Recovery And Climate Experiment (GRACE) in 2002 and its successor, GRACE Follow-On in 2018 (GRACE-FO) opened up new ways to study groundwater changes. These platforms measure the variations of the Earth's gravity field, which in turn can be related to terrestrial water storage (TWS). The main objective of this thesis is to improve the estimation and spatial resolution of TWS and related groundwater storage changes (GWS), using GRACE and GRACE-FO data. This challenge was addressed through four specific objectives, where original approaches were developed in each case. The first objective was to understand and better take into account the uncertainties associated with the hydrological models (the Global Land Data Assimilation System (GLDAS), and the Water Global Assessment Prognosis hydrological model (WGHM)), generally used in the processing of GRACE or GRACE-FO data. The thesis proposes a new approach based on the Gauss-Markov model to estimate the optimal hydrological parameters from GLDAS, considering six different surface schemes. The Förstner estimator and the best quadratic unbiased estimator of the variance components were used with a least-squares method to estimate the optimal hydrological parameters and their errors. The comparison of the optimal TWS derived from GLDAS to the TWS derived from WGHM showed a very significant correlation of r = 0.91. The correlation obtained with GRACE was r = 0.71, which increased to r = 0.81 when the groundwater component was removed from GRACE. Compared to WGHM and GRACE, the optimal TWS calculated from GLDAS had much smaller errors (RMSE = 7 to 8.5 mm) than those obtained when individual surface schemes are considered (RMSE = 10 to 21 mm); demonstrating the performance of the proposed approach. The second specific objective was to understand regional variations in TWS and their uncertainties. The approach was applied over the Canadian landmass. To achieve the goal, the thesis proposes a new modeling of glacial isostatic adjustment uplift (GIA) in Canada. The comparison of the results of the proposed model and three other existing models with data from 149 very high precision GPS stations demonstrated its superiority in the region considered. The regional approach proposed was then used to extract TWS by correcting the effects of the GIA and leakage. The analyzes showed patterns of significant seasonal variations in TWS, with values ranging between -160 mm and 80 mm. Overall TWS showed a positive slope of temporal variations over the Canadian landmass (+ 6.6 mm/year) with GRACE and GRACE-FO combined. The slope reached up to 45 mm/year in the Hudson Bay region. The third objective was to extract GWS component using a comprehensive rigorous approach to reconstruct, refine and map the variations of GWS and its associated uncertainties. The approach used the methods proposed in the two previous objectives. Moreover, a new filtering approach called Gaussian-Han-Fan (GHF) was developed and integrated into the process in order to have a more robust procedure for extracting information from GRACE and GRACE-FO data. The performance and merits of the proposed filter compared to previous filters were analyzed. Then, the groundwater signal was reconstructed by taking into account all the other components, including surface water variations (estimated using satellite altimetry data). The results showed that the average variations of GWS are between -200 mm and +230 mm in the Canadian Prairies. The maximum and minimum GWS trends were found around the Hudson Bay region (approximately 55 mm/year) and southern Prairies (approximately -20 mm/year), respectively. The error on GWS was around 10% (about 19 mm). The estimated GWS changes were validated using the data from 116 in-situ wells. This validation showed a significant level of correlation (r > |0.70|, P |0.90|, P |0,70|, P |0,90|, P < 10-4, RMSE < 30 mm). Enfin, le dernier objectif consistait à améliorer la résolution spatiale des résultats extraits des données GRACE de 1° à 0.25°. Ainsi, une nouvelle approche basée sur l'ajustement des conditions a d’abord été proposée pour estimer les paramètres hydrologiques optimaux et leurs erreurs. Elle est légèrement différente de la méthode proposée dans le premier objectif. Ensuite, les corrections requises pour extraire les anomalies de TWS et ses incertitudes de manière rigoureuse ont été effectuées suivant la méthodologie présentée à l’objectif 3. Par la suite une nouvelle méthode basée sur la combinaison spectrale-spatiale a été développée pour dériver les anomalies de TWS à échelle réduite (0.25°), en combinant de manière optimale les modèles GRACE et les paramètres hydrologiques. Enfin, les anomalies d’eau souterraines ont été dérivées en utilisant les anomalies de TWS estimées. Les validations ont été faites à partir des données de 75 puits en aquifère non confiné en Alberta. Elles démontrent le potentiel de l’approche proposée avec une corrélation très significative de = 0.80 et un RMSE de 11 mm. Ainsi, la recherche proposée dans la thèse a permis de faire des avancées importantes dans l’extraction d’information sur le stockage total d’eau et les eaux souterraines à partir des données des satellites gravimétriques GRACE et GRACE-FO. Elle propose et valide plusieurs nouvelles approches originales en s’appuyant sur des données in-situ. Elle ouvre également plusieurs nouvelles avenues de recherche, qui permettront de faciliter une utilisation plus opérationnelle de ces types de données à l’échelle régionale, voire locale

    National Report for the IAG of the IUGG 2019-2022

    Full text link
    Major results of researches conducted by Russian geodesists in 2019-2022 on the topics of the International Association of Geodesy (IAG) of the International Union of Geodesy and Geophysics (IUGG) are presented in this issue. This report is prepared by the Section of Geodesy of the National Geophysical Committee of Russia. In the report prepared for the XXVII General Assembly of IUGG (Germany, Berlin, 11-20 July 2023), the results of principal researches in geodesy, geodynamics, gravimetry, in the studies of geodetic reference frame creation and development, Earth's shape and gravity field, Earth's rotation, geodetic theory, its application and some other directions are briefly described. For some objective reasons not all results obtained by Russian scientists on the field of geodesy are included in the report.Comment: Misprint in the title of the arXiv record has been corrected. The submission content is not affecte

    Beyond 100: The Next Century in Geodesy

    Get PDF
    This open access book contains 30 peer-reviewed papers based on presentations at the 27th General Assembly of the International Union of Geodesy and Geophysics (IUGG). The meeting was held from July 8 to 18, 2019 in Montreal, Canada, with the theme being the celebration of the centennial of the establishment of the IUGG. The centennial was also a good opportunity to look forward to the next century, as reflected in the title of this volume. The papers in this volume represent a cross-section of present activity in geodesy, and highlight the future directions in the field as we begin the second century of the IUGG. During the meeting, the International Association of Geodesy (IAG) organized one Union Symposium, 6 IAG Symposia, 7 Joint Symposia with other associations, and 20 business meetings. In addition, IAG co-sponsored 8 Union Symposia and 15 Joint Symposia. In total, 3952 participants registered, 437 of them with IAG priority. In total, there were 234 symposia and 18 Workshops with 4580 presentations, of which 469 were in IAG-associated symposia. ; This volume will publish papers based on International Association of Geodesy (IAG) -related presentations made at the International Association of Geodesy at the 27th IUGG General Assembly, Montreal, July 2019. It will include papers associated with all of the IAG and joint symposia from the meeting, which span all aspects of modern geodesy, and linkages to earth and environmental sciences. It continues the long-running IAG Symposia Series

    Beyond 100: The Next Century in Geodesy

    Get PDF
    This open access book contains 30 peer-reviewed papers based on presentations at the 27th General Assembly of the International Union of Geodesy and Geophysics (IUGG). The meeting was held from July 8 to 18, 2019 in Montreal, Canada, with the theme being the celebration of the centennial of the establishment of the IUGG. The centennial was also a good opportunity to look forward to the next century, as reflected in the title of this volume. The papers in this volume represent a cross-section of present activity in geodesy, and highlight the future directions in the field as we begin the second century of the IUGG. During the meeting, the International Association of Geodesy (IAG) organized one Union Symposium, 6 IAG Symposia, 7 Joint Symposia with other associations, and 20 business meetings. In addition, IAG co-sponsored 8 Union Symposia and 15 Joint Symposia. In total, 3952 participants registered, 437 of them with IAG priority. In total, there were 234 symposia and 18 Workshops with 4580 presentations, of which 469 were in IAG-associated symposia. ; This volume will publish papers based on International Association of Geodesy (IAG) -related presentations made at the International Association of Geodesy at the 27th IUGG General Assembly, Montreal, July 2019. It will include papers associated with all of the IAG and joint symposia from the meeting, which span all aspects of modern geodesy, and linkages to earth and environmental sciences. It continues the long-running IAG Symposia Series
    corecore