817 research outputs found

    Traffic shapping trends in optical packet/burst switching networks

    Get PDF
    This paper surveys a set of relevant techniques proposed for traffic shaping in backbone OBS/OPS networks. The work is intended to fuel the near future research in the topic the authors will conduct within BONE project. Keywords: traffic shaping, traffic conditioning, OPS, OBS.This research has been supported by the BONE-project ("Building the Future Optical Network in Europe”), a Network of Excellence funded by the European Commission through the 7th ICT-Framework Program, the support of MEC project TEC2007-67966-01/TCM CON-PARTE-1, and it is also developed in the framework of "Programa de Ayudas a Grupos de Excelencia de la RegiĂłn de Murcia, de la FundaciĂłn SĂ©neca, Agencia de Ciencia y TecnologĂ­a de la RM (Plan Regional de Ciencia y TecnologĂ­a 2007/2010)

    Node design in optical packet switched networks

    Get PDF

    Perspectives of Imaging of Single Protein Molecules with the Present Design of the European XFEL. - Part I - X-ray Source, Beamlime Optics and Instrument Simulations

    Full text link
    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 micrometer and 1 micrometer size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between x-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal SASE1 output power is about 50 GW. This is very far from the level required for single biomolecule imaging, even assuming perfect beamline and focusing efficiency. Here we demonstrate that the parameters of the accelerator complex and of the SASE1 undulator offer an opportunity to optimize the SPB beamline for single biomolecule imaging with minimal additional costs and time. Start to end simulations from the electron injector at the beginning of the accelerator complex up to the generation of diffraction data indicate that one can achieve diffraction without diffraction with about 0.5 photons per Shannon pixel at near-atomic resolution with 1e13 photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 1e23 ph/cm^2. This result is exemplified using the RNA Pol II molecule as a case study

    Recent Trends and Considerations for High Speed Data in Chips and System Interconnects

    Get PDF
    This paper discusses key issues related to the design of large processing volume chip architectures and high speed system interconnects. Design methodologies and techniques are discussed, where recent trends and considerations are highlighted

    A Survey of Quality of Service Differentiation Mechanisms for Optical Burst Switching Networks

    Get PDF
    Cataloged from PDF version of article.This paper presents an overview of Quality of Service (QoS) differentiation mechanisms proposed for Optical Burst Switching (OBS) networks. OBS has been proposed to couple the benefits of both circuit and packet switching for the ‘‘on demand’’ use of capacity in the future optical Internet. In such a case, QoS support imposes some important challenges before this technology is deployed. This paper takes a broader view on QoS, including QoS differentiation not only at the burst but also at the transport levels for OBS networks. A classification of existing QoS differentiation mechanisms for OBS is given and their efficiency and complexity are comparatively discussed. We provide numerical examples on how QoS differentiation with respect to burst loss rate and transport layer throughput can be achieved in OBS networks. © 2009 Elsevier B.V. All rights reserved

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    An improvement over TCP Vegas to enhance its performance in optical burst switching networks

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Optical review. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10043-021-00652-w.The demand for high bandwidth on the Internet is growing drastically, and one of the solutions for tackling this problem is using optical networks. Burst switching is one of the techniques that can be used in optical networks to handle high traffic. Aside from the many advantages that this technique has, it suffers from a big flaw called burst contention. Optical burst switching (OBS) is a switching technique without any buffering system. As a result, when two bursts are trying to reserve one resource, one of them drops. This drawback can have a significant impact on the performance of some protocols like TCP because they have not been designed to perform in a network without any queuing system and cannot distinguish a drop is because of the congestion or contention. In this paper, a new algorithm called AVGR (Average of RTTs) is proposed based on some mathematical equations to prevent the degradation of TCP. It tries to calculate averages for some RTTs in three different periods. Then base on the obtained results, the congestion control mechanism will be modified. The primary goal of the algorithm is to determine the current status of the network and make proper decisions based on it.This work has been funded by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (2017 SGR 376) and the Spanish Government under Project PID2019-106808RA-I00 AEI/FEDER UE.Peer ReviewedPostprint (author's final draft
    • 

    corecore