15,447 research outputs found

    Ranking ideas for diversity and quality

    Full text link
    When selecting ideas or trying to find inspiration, designers often must sift through hundreds or thousands of ideas. This paper provides an algorithm to rank design ideas such that the ranked list simultaneously maximizes the quality and diversity of recommended designs. To do so, we first define and compare two diversity measures using Determinantal Point Processes (DPP) and additive sub-modular functions. We show that DPPs are more suitable for items expressed as text and that a greedy algorithm diversifies rankings with both theoretical guarantees and empirical performance on what is otherwise an NP-Hard problem. To produce such rankings, this paper contributes a novel way to extend quality and diversity metrics from sets to permutations of ranked lists. These rank metrics open up the use of multi-objective optimization to describe trade-offs between diversity and quality in ranked lists. We use such trade-off fronts to help designers select rankings using indifference curves. However, we also show that rankings on trade-off front share a number of top-ranked items; this means reviewing items (for a given depth like the top 10) from across the entire diversity-to-quality front incurs only a marginal increase in the number of designs considered. While the proposed techniques are general purpose enough to be used across domains, we demonstrate concrete performance on selecting items in an online design community (OpenIDEO), where our approach reduces the time required to review diverse, high-quality ideas from around 25 hours to 90 minutes. This makes evaluation of crowd-generated ideas tractable for a single designer. Our code is publicly accessible for further research

    An end-to-end Neural Network Framework for Text Clustering

    Full text link
    The unsupervised text clustering is one of the major tasks in natural language processing (NLP) and remains a difficult and complex problem. Conventional \mbox{methods} generally treat this task using separated steps, including text representation learning and clustering the representations. As an improvement, neural methods have also been introduced for continuous representation learning to address the sparsity problem. However, the multi-step process still deviates from the unified optimization target. Especially the second step of cluster is generally performed with conventional methods such as k-Means. We propose a pure neural framework for text clustering in an end-to-end manner. It jointly learns the text representation and the clustering model. Our model works well when the context can be obtained, which is nearly always the case in the field of NLP. We have our method \mbox{evaluated} on two widely used benchmarks: IMDB movie reviews for sentiment classification and 2020-Newsgroup for topic categorization. Despite its simplicity, experiments show the model outperforms previous clustering methods by a large margin. Furthermore, the model is also verified on English wiki dataset as a large corpus

    A new class of metrics for learning on real-valued and structured data

    Full text link
    We propose a new class of metrics on sets, vectors, and functions that can be used in various stages of data mining, including exploratory data analysis, learning, and result interpretation. These new distance functions unify and generalize some of the popular metrics, such as the Jaccard and bag distances on sets, Manhattan distance on vector spaces, and Marczewski-Steinhaus distance on integrable functions. We prove that the new metrics are complete and show useful relationships with ff-divergences for probability distributions. To further extend our approach to structured objects such as concept hierarchies and ontologies, we introduce information-theoretic metrics on directed acyclic graphs drawn according to a fixed probability distribution. We conduct empirical investigation to demonstrate intuitive interpretation of the new metrics and their effectiveness on real-valued, high-dimensional, and structured data. Extensive comparative evaluation demonstrates that the new metrics outperformed multiple similarity and dissimilarity functions traditionally used in data mining, including the Minkowski family, the fractional LpL^p family, two ff-divergences, cosine distance, and two correlation coefficients. Finally, we argue that the new class of metrics is particularly appropriate for rapid processing of high-dimensional and structured data in distance-based learning

    Real-Time Web Scale Event Summarization Using Sequential Decision Making

    Full text link
    We present a system based on sequential decision making for the online summarization of massive document streams, such as those found on the web. Given an event of interest (e.g. "Boston marathon bombing"), our system is able to filter the stream for relevance and produce a series of short text updates describing the event as it unfolds over time. Unlike previous work, our approach is able to jointly model the relevance, comprehensiveness, novelty, and timeliness required by time-sensitive queries. We demonstrate a 28.3% improvement in summary F1 and a 43.8% improvement in time-sensitive F1 metrics.Comment: in Proceedings of the 25th International Joint Conference on Artificial Intelligence 201

    Evaluating the Complementarity of Taxonomic Relation Extraction Methods Across Different Languages

    Full text link
    Modern information systems are changing the idea of "data processing" to the idea of "concept processing", meaning that instead of processing words, such systems process semantic concepts which carry meaning and share contexts with other concepts. Ontology is commonly used as a structure that captures the knowledge about a certain area via providing concepts and relations between them. Traditionally, concept hierarchies have been built manually by knowledge engineers or domain experts. However, the manual construction of a concept hierarchy suffers from several limitations such as its coverage and the enormous costs of its extension and maintenance. Ontology learning, usually referred to the (semi-)automatic support in ontology development, is usually divided into steps, going from concepts identification, passing through hierarchy and non-hierarchy relations detection and, seldom, axiom extraction. It is reasonable to say that among these steps the current frontier is in the establishment of concept hierarchies, since this is the backbone of ontologies and, therefore, a good concept hierarchy is already a valuable resource for many ontology applications. The automatic construction of concept hierarchies from texts is a complex task and much work have been proposing approaches to better extract relations between concepts. These different proposals have never been contrasted against each other on the same set of data and across different languages. Such comparison is important to see whether they are complementary or incremental. Also, we can see whether they present different tendencies towards recall and precision. This paper evaluates these different methods on the basis of hierarchy metrics such as density and depth, and evaluation metrics such as Recall and Precision. Results shed light over the comprehensive set of methods according to the literature in the area

    Extractive Multi-document Summarization Using Multilayer Networks

    Full text link
    Huge volumes of textual information has been produced every single day. In order to organize and understand such large datasets, in recent years, summarization techniques have become popular. These techniques aims at finding relevant, concise and non-redundant content from such a big data. While network methods have been adopted to model texts in some scenarios, a systematic evaluation of multilayer network models in the multi-document summarization task has been limited to a few studies. Here, we evaluate the performance of a multilayer-based method to select the most relevant sentences in the context of an extractive multi document summarization (MDS) task. In the adopted model, nodes represent sentences and edges are created based on the number of shared words between sentences. Differently from previous studies in multi-document summarization, we make a distinction between edges linking sentences from different documents (inter-layer) and those connecting sentences from the same document (intra-layer). As a proof of principle, our results reveal that such a discrimination between intra- and inter-layer in a multilayered representation is able to improve the quality of the generated summaries. This piece of information could be used to improve current statistical methods and related textual models

    Wisdom of Crowds cluster ensemble

    Full text link
    The Wisdom of Crowds is a phenomenon described in social science that suggests four criteria applicable to groups of people. It is claimed that, if these criteria are satisfied, then the aggregate decisions made by a group will often be better than those of its individual members. Inspired by this concept, we present a novel feedback framework for the cluster ensemble problem, which we call Wisdom of Crowds Cluster Ensemble (WOCCE). Although many conventional cluster ensemble methods focusing on diversity have recently been proposed, WOCCE analyzes the conditions necessary for a crowd to exhibit this collective wisdom. These include decentralization criteria for generating primary results, independence criteria for the base algorithms, and diversity criteria for the ensemble members. We suggest appropriate procedures for evaluating these measures, and propose a new measure to assess the diversity. We evaluate the performance of WOCCE against some other traditional base algorithms as well as state-of-the-art ensemble methods. The results demonstrate the efficiency of WOCCE's aggregate decision-making compared to other algorithms.Comment: Intelligent Data Analysis (IDA), IOS Pres

    Nonnegative Multi-level Network Factorization for Latent Factor Analysis

    Full text link
    Nonnegative Matrix Factorization (NMF) aims to factorize a matrix into two optimized nonnegative matrices and has been widely used for unsupervised learning tasks such as product recommendation based on a rating matrix. However, although networks between nodes with the same nature exist, standard NMF overlooks them, e.g., the social network between users. This problem leads to comparatively low recommendation accuracy because these networks are also reflections of the nature of the nodes, such as the preferences of users in a social network. Also, social networks, as complex networks, have many different structures. Each structure is a composition of links between nodes and reflects the nature of nodes, so retaining the different network structures will lead to differences in recommendation performance. To investigate the impact of these network structures on the factorization, this paper proposes four multi-level network factorization algorithms based on the standard NMF, which integrates the vertical network (e.g., rating matrix) with the structures of horizontal network (e.g., user social network). These algorithms are carefully designed with corresponding convergence proofs to retain four desired network structures. Experiments on synthetic data show that the proposed algorithms are able to preserve the desired network structures as designed. Experiments on real-world data show that considering the horizontal networks improves the accuracy of document clustering and recommendation with standard NMF, and various structures show their differences in performance on these two tasks. These results can be directly used in document clustering and recommendation systems

    Short Text Topic Modeling Techniques, Applications, and Performance: A Survey

    Full text link
    Analyzing short texts infers discriminative and coherent latent topics that is a critical and fundamental task since many real-world applications require semantic understanding of short texts. Traditional long text topic modeling algorithms (e.g., PLSA and LDA) based on word co-occurrences cannot solve this problem very well since only very limited word co-occurrence information is available in short texts. Therefore, short text topic modeling has already attracted much attention from the machine learning research community in recent years, which aims at overcoming the problem of sparseness in short texts. In this survey, we conduct a comprehensive review of various short text topic modeling techniques proposed in the literature. We present three categories of methods based on Dirichlet multinomial mixture, global word co-occurrences, and self-aggregation, with example of representative approaches in each category and analysis of their performance on various tasks. We develop the first comprehensive open-source library, called STTM, for use in Java that integrates all surveyed algorithms within a unified interface, benchmark datasets, to facilitate the expansion of new methods in this research field. Finally, we evaluate these state-of-the-art methods on many real-world datasets and compare their performance against one another and versus long text topic modeling algorithm.Comment: arXiv admin note: text overlap with arXiv:1808.02215 by other author

    State of the Art, Evaluation and Recommendations regarding "Document Processing and Visualization Techniques"

    Full text link
    Several Networks of Excellence have been set up in the framework of the European FP5 research program. Among these Networks of Excellence, the NEMIS project focuses on the field of Text Mining. Within this field, document processing and visualization was identified as one of the key topics and the WG1 working group was created in the NEMIS project, to carry out a detailed survey of techniques associated with the text mining process and to identify the relevant research topics in related research areas. In this document we present the results of this comprehensive survey. The report includes a description of the current state-of-the-art and practice, a roadmap for follow-up research in the identified areas, and recommendations for anticipated technological development in the domain of text mining.Comment: 54 pages, Report of Working Group 1 for the European Network of Excellence (NoE) in Text Mining and its Applications in Statistics (NEMIS
    • …
    corecore