1,873 research outputs found

    Experimental Characterization and Manufacture of Polymer Nanocomposite Dielectric Coatings for High-Temperature Superconductor Applications

    Get PDF
    Increased implementation of high-temperature superconducting (HTS) power transmission has the potential to revolutionize the efficiency of electrical grids and help unlock a fully electric transportation infrastructure. Realizing the benefits of HTS systems has been impeded by a lack of available dielectric insulation materials that can 1) withstand the extreme cryogenic operating environment of superconductors and 2) demonstrate low temperature processing that is compatible with existing superconductor manufacturing methods. Solving this problem necessitates a high-performance dielectric material with multifunctional properties specifically suited for operation in HTS systems. A polyamide and silicon dioxide (PA/SiO2) nanocomposite material with exceptional thermal stability has been developed as a solid dielectric coating solution. This study conducts mechanical, thermomechanical, and dielectric characterization efforts that explore multi-scale material property relationships in the nanocomposite to optimize it for this application. Additionally, an experimental manufacturing system is developed to provide a transition to large-scale processing of the nanocomposite coating material. The results of these efforts demonstrate a viable option to solve the material challenges impeding wider implementation of HTS power transmission and chart a path forward for the development of manufactured nanocomposite dielectrics

    Process techniques study of integrated circuits Final scientific report

    Get PDF
    Surface impurity and structural defect analysis on thermally grown silicon oxide integrated circui

    Stochastic Simulation of Mudcrack Damage Formation in an Environmental Barrier Coating

    Get PDF
    The FEAMAC/CARES program, which integrates finite element analysis (FEA) with the MAC/GMC (Micromechanics Analysis Code with Generalized Method of Cells) and the CARES/Life (Ceramics Analysis and Reliability Evaluation of Structures / Life Prediction) programs, was used to simulate the formation of mudcracks during the cooling of a multilayered environmental barrier coating (EBC) deposited on a silicon carbide substrate. FEAMAC/CARES combines the MAC/GMC multiscale micromechanics analysis capability (primarily developed for composite materials) with the CARES/Life probabilistic multiaxial failure criteria (developed for brittle ceramic materials) and Abaqus (Dassault Systmes) FEA. In this report, elastic modulus reduction of randomly damaged finite elements was used to represent discrete cracking events. The use of many small-sized low-aspect-ratio elements enabled the formation of crack boundaries, leading to development of mudcrack-patterned damage. Finite element models of a disk-shaped three-dimensional specimen and a twodimensional model of a through-the-thickness cross section subjected to progressive cooling from 1,300 C to an ambient temperature of 23 C were made. Mudcrack damage in the coating resulted from the buildup of residual tensile stresses between the individual material constituents because of thermal expansion mismatches between coating layers and the substrate. A two-parameter Weibull distribution characterized the coating layer stochastic strength response and allowed the effect of the Weibull modulus on the formation of damage and crack segmentation lengths to be studied. The spontaneous initiation of cracking and crack coalescence resulted in progressively smaller mudcrack cells as cooling progressed, consistent with a fractal-behaved fracture pattern. Other failure modes such as delamination, and possibly spallation, could also be reproduced. The physical basis assumed and the heuristic approach employed, which involves a simple stochastic cellular automaton methodology to approximate the crack growth process, are described. The results ultimately show that a selforganizing mudcrack formation can derive from a Weibull distribution that is used to describe the stochastic strength response of the bulk brittle ceramic material layers of an EBC

    \u3cem\u3eMaterials Integration and Device Fabrication of Active Matrix Thin Film Transistor Arrays for Intracellular Gene Delivery\u3c/em\u3e

    Get PDF
    Materials and process integration of a thin film transistor array for intra/extracellular probing are described in this study. A combinatorial rf magnetron sputter deposition technique was employed to investigate the electrical characteristics and micro-structural properties of molybdenum tungsten (MoW) high temperature electrodes as a function of the binary composition. In addition to the composition, the effect of substrate bias and temperature was investigated. The electrical resistivity of MoW samples deposited at room temperature with zero bias followed the typical Nordheim’s rule as a function of composition. The resistivity of samples deposited with substrate bias is uniformly lower and obeyed the rule of mixtures as a function of composition. The metastable β-W phase was not observed in the biased films even when deposited at room temperature. High resolution scanning electron microscopy revealed a more dense structure for the biased films, which correlated to the significantly lower film resistivity. In order to overcome deficiencies in sputtered silicon dioxide (SiO2) films the rf magnetron sputtering process was optimized by using a full factorial design of experiment (DOE). The optimized SiO2 film has a 5.7 MV/cm breakdown field and a 6.2 nm/min deposition rate at 10 W/cm2 RF power, 3 mTorr pressure, 300 °C substrate temperature, and 56 V substrate bias. Thin film transistors (TFTs) were also fabricated and characterized to show the prospective applications of the optimized SiO2 films. The effect that direct current (DC) substrate bias has on radio frequency (RF)-sputter-deposited amorphous silicon (a-Si) films was also investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFT) that were completely sputter-deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film. The crystallization properties of amorphous silicon (a-Si) thin film deposited by rf magnetron sputter deposition with substrate bias have been thoroughly characterized. The crystallization speed can be increased and the crystallization temperature can be drastically lowered relative to unbiased a-Si even though the stress state of biased a-Si film is highly compressive. The substrate bias enhances defect formation (vacancies, dislocations, stacking faults) via ion bombardment during the film growth, which effectively increases the driving force for crystallization of the films. The electrical and optical properties of sputter-deposited silicon nitride (SiNx) and n+ amorphous silicon (n+ a-Si) films as a function of substrate bias during sputter deposition were investigated. The breakdown voltage of sputter-deposited SiNx with 20 W (125 V) substrate bias is 7.65 MV/cm which is equivalent to that of plasma enhanced chemical vapor deposition (PECVD) SiNx films. The conductivity of n+ a-Si films are also enhanced by applying substrate bias during the sputter deposition. To verify the effect of substrate bias, amorphous silicon thin film transistors (TFTs) were fabricated with substrate biased thin films and compared their electrical properties with conventional sputter deposited TFTs. Lastly, electrochemical measurements were analyzed using gold and pyrrole solution to verify the active addressability of the TFT array fabricated by entirely by sputter deposited thin films below 200 °C temperature

    Mechanisms for fatigue and wear of polysilicon structural thinfilms

    Full text link
    corecore