490 research outputs found

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Aeronautical engineering: A continuing bibliography with indexes (supplement 211)

    Get PDF
    A continuing bibliography (NASA SP-7037) lists 519 reports, journal articles and other documents originally announced in February 1987 in Scientific and Technical Aerospace Reports (STAR) or in the International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspect of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine STAR specific categories and the remaining STAR major categories. The arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals. The IAA items will precede the STAR items within each category. Seven indexes entitled subject, personal author, corporate source, foreign technology, contract number, report number, and accession number are included

    Fabrication of bioactive osteogenic controlled-release systems, cellular platforms, and cellular capsules using layer -by -layer nanoassembly

    Get PDF
    There is an ever-increasing awareness that the field of tissue engineering offers many potential solutions to clinical problems. While advances along these lines have been made, the design and implementation of an off the shelf tissue is yet to be realized. Thus, the objectives of this work were largely aimed at the design and fabrication of biocompatible, bioactive structures which could be integrated into existing biomaterial products. The electrostatic layer-by-layer (LbL) self-assembly technique was used to incorporate biologically relevant molecules within controlled release systems, cell culture platforms, and 3-D cellular capsules. Two delivery systems were investigated to determine the release of a model drug, dexamethasone (DEX). In the first system, nanothin polyelectrolyte (PE) layers were applied to the micronized drug crystals as a diffusion barrier. In the second system, DEX was physically entrapped within calcium alginate microspheres which were further modified with PE layers. The fabrication of cell culture platforms functionalized with nanothin layers of PEs, TiO2 nanoparticles, and the growth factor TGFβ1 was achieved through ultrasonic nebulization. Finally, individual cellular capsules were fabricated by elaborating the LbL process on mesenchymal stem cell and human dermal fibroblast templates. Materials characterization and cell culture testing were performed as preliminary indicators of potential cytotoxicity. Release of the drug DEX was enhanced when directly templated with polyelectrolyte layers while DEX entrapment within polyelectrolyte-modified alginate microspheres reduced drug release by a factor of three. An encouraging result of in vitro cell culture assessment was the distinct change in fibrochondrocyte morphology when compared with positive and negative controls. An ultrasonic nebulizer produced 14-layered cell culture substrates containing DEX, TiO2 nanoparticles, and the growth factor TGFβ1. In comparison with traditionally dipped substrates, layer fabrication was expedited six-fold. Moreover, the positioning of TGFβ1 within the layer architecture modulated cell behavior. For example, incorporation of the growth factor as a terminal layer produced visible cellular extensions associated with enhanced adhesion of human dermal fibroblasts (HDFs) to the substrates. The final application of LbL was for production of nanothin cellular capsules. Layer fabrication onto both HDFs and mouse mesenchymal stem cells (MSCs) was demonstrated with acceptable cell tolerances although cell viability is likely affected by layer composition and encapsulation time. The major findings of this work not only demonstrated the feasibility of the technologies, but also their ability to influence cellular behavior by exposure to specific layer chemistries and architectures. The results are extremely promising for both further fundamental research, as well as translation into products. A major obstacle is determining optimal parameters necessary to yield a given cell response. Moreover, cost effectiveness must be addressed before clinical implementation of these systems is realized. Undoubtedly, the work here provides an underpinning for the development of additional capsules, microspheres, and substrates which could ultimately be integrated to create novel, biocompatible, heterogeneous assemblies

    Fabrication and Applications of Multifunctional Superhydrophobic Surfaces Based on Surface Chemistry and Morphology

    Full text link
    Superhydrophobic surfaces are gaining great interests in both fundamental researches and technological applications, because of their unique non-wetting and self-cleaning properties. By mimicking the hierarchical surface structure of the natural superhydrophobic surface, i.e. lotus leaf, numerous artificial surperhydrophobic surfaces were developed. However, the challenge is how to fabricate superhydrophobic surfaces by a scalable and economical method. To address this challenge, our group has developed methodologies that enable the fabrication of superhydrophobic surfaces in inexpensive and potentially scalable ways, such as lamination and 3-D printing. To expand on applications, we also combined other desired functionalities into the superhydrophobic surfaces. The transparent superhydrophobic surface has a great advantage of highly visible light transmittance, which make it have potential applications for solar-cell panels, optical lens, and automobile windshields, etc. Superhydrophobicity can be achieved by constructing hierarchical roughness on the surface of low surface energy material. However, the roughness may increase light scattering and lower the transparency. To minimize the affection on transparency, roughness at small scales, i.e. nanometers, is required. In Chapter 2, I discuss the fabrication of a transparent superhydrophobic surface by dip-coating and lamination method. The polymer substrate is first coated with a layer of silica nanoparticles; the following lamination process makes the nanoparticles partially embedded into polymer substrate which increases the mechanical stability. The transparency was measured by UV-Vis spectroscopy. The surface morphology was characterized by scanning electron microscope and atomic force microscope. The mechanical stability of fabricated transparent superhydrophobic surface was evaluated by using a water flushing method. Photocatalytic properties can also be integrated into superhydrophobic surfaces, which will enhance the self-cleaning property by removing the contaminations through photo-oxidation reactions. Photocatalytic superhydrophobic surfaces also have potential applications in water disinfection, treatment of organic waste solutions, and photodynamic therapy. In Chapter 3, two different methods were developed to fabricate photocatalytic superhydrophobic surfaces: 1. The nanocomposite of TiO2 and polymer was created by a lamination method. The surface roughness was controlled by templating during the lamination. Surfaces also fabricated without the templating process. All the surfaces exhibited reversible wettability and photocatalytic properties; 2. Photocatalytic particles (TiO2 or silicon-phthalocyanine) were immobilized on the surfaces of printed polydimethylsiloxane cone shape posts. The triple-level roughness (posts, particle aggregates, and individual particles) make the fabricated surface superhydrophobic and maintaining stable Cassie state during photo-reactions. In a specially designed three-phase photo-reactor, photocatalytic reactions such as photooxidation of Rhodamine B and bovine serum albumin, and singlet oxygen trapping were studied as a function of gas phase composition. The effect of bubbling through the liquid phase, which facilitates the transmission of reactive species were also discussed in Chapter 3. Base on the photocatalytic TiO2/Polymer nanocomposite film we have made, we demonstrated an application of this film in photodegrading waste organic dye solution generated in biology teaching laboratories. Furthermore, we developed a laboratory module for an undergraduate analytical chemistry lab course. In this course, students will learn about the TiO2 photocatalytic mechanism; degrade waste solutions collected from laboratories using sunlight and theTiO2/PE catalytic bags and investigate the degradation efficiency using UV-Vis absorption spectroscopy measurements. On a superhydrophobic surface, an aqueous droplet (µL) can maintain a nearly spherical shape without wetting the surface. This geometry creates a unique environment in which chemical reactions at the solid-liquid-vapor interphase can be studied. Two types of superhydrophobic surfaces were fabricated using modified 3-D printing methods. In one case, which is discussed in Chapter 4, functionalized superhydrophobic surfaces were fabricated in which reactive particles are partially embedded into the printed PDMS posts. On this surface, interactions between the solid surface and solute molecules were studied as a function of convection within the droplet. In the second case, which is discussed in Chapter 5, glass pedestals were attached to the top of each PDMS post in the array. These glass pedestals enable the precise dispensing of nanoliter (25.0 nL ± 0.5 nL) droplets. This surface can also support larger (\u3e 1µL) droplets while exhibiting contact angles \u3e150°. Evaporation of droplets promotes the concentration of dilute solute molecules into a well-defined region that facilitates the identification of biopolymers in quantities as low as 5 attomoles, by MALDI-TOF mass spectrometry. In addition, this surface can be functionalized to selectively bind specific biomolecules that can be subsequently identified by MALDI-TOF. This type of surface is especially useful for working with precious fluids such as venom from snakes and spiders. With the advantage of precise dispensing of nanoliter droplets, we further improved the dispensing system by printing only PDMS post arrays of a special morphology structure on a glass slide to form a nano-Droplet Array Plate (nDAP). By using the nDAP dispensing system, I was able to study the effect of surfactant chemistry on the distribution of hydrophobic microbeads (35 µm) in the aqueous droplet and the dispensing properties. The number of microbeads dispensed was controlled by tuning the relative concentration of microbeads and surfactant. Multiple single-bead dispensing was achieved at optimized conditions. This work is discussed in Chapter 6

    NASA Tech Briefs, January 2013

    Get PDF
    Topics include: Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector; Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators; 3D Hail Size Distribution Interpolation/Extrapolation Algorithm; Color-Changing Sensors for Detecting the Presence of Hypergolic Fuels; Artificial Intelligence Software for Assessing Postural Stability; Transformers: Shape-Changing Space Systems Built with Robotic Textiles; Fibrillar Adhesive for Climbing Robots; Using Pre-Melted Phase Change Material to Keep Payloads in Space Warm for Hours without Power; Development of a Centrifugal Technique for the Microbial Bioburden Analysis of Freon (CFC-11); Microwave Sinterator Freeform Additive Construction System (MS-FACS); DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver; On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers; FPGA Vision Data Architecture; Memory Circuit Fault Simulator; Ultra-Compact Transputer-Based Controller for High-Level, Multi-Axis Coordination; Regolith Advanced Surface Systems Operations Robot Excavator; Magnetically Actuated Seal; Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes; System for Contributing and Discovering Derived Mission and Science Data; Remote Viewer for Maritime Robotics Software; Stackfile Database; Reachability Maps for In Situ Operations; JPL Space Telecommunications Radio System Operating Environment; RFI-SIM: RFI Simulation Package; ION Configuration Editor; Dtest Testing Software; IMPaCT - Integration of Missions, Programs, and Core Technologies; Integrated Systems Health Management (ISHM) Toolkit; Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration; In Situ Solid Particle Generator; Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature; Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments; Towed Subsurface Optical Communications Buoy; High-Collection-Efficiency Fluorescence Detection Cell; Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths; UV Resonant Raman Spectrometer with Multi-Line Laser Excitation; Medicine Delivery Device with Integrated Sterilization and Detection; Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME; Airborne Tomographic Swath Ice Sounding Processing System; flexplan: Mission Planning System for the Lunar Reconnaissance Orbiter; Estimating Torque Imparted on Spacecraft Using Telemetry; PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils; Multiple-Frame Detection of Subpixel Targets in Thermal Image Sequences; Metric Learning to Enhance Hyperspectral Image Segmentation; Basic Operational Robotics Instructional System; Sheet Membrane Spacesuit Water Membrane Evaporator; Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers; Motor Qualification for Long-Duration Mars Missions

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978

    Rotating Backing Brush

    Get PDF
    In the final steps of GAF’s shingle production process, small asphalt particles called fines are applied. Some fines adhere well to the shingle sheet, while others temporarily stick only to fall off the sheet further down the manufacturing line. As a result, the shingle plant floor is covered in fines that have fallen due to vibrations and gravity. The technicians and engineers at GAF want a cleaner working environment and to potentially reuse the loose fines. We are a senior project team that solved this problem by designing a system to remove and collect loose fines. In this document, the Senior Project Report, we fully describe our design process, final design, and results. After extensive research and consultation with GAF, we defined the scope of the project and set specifications for our design. With these specifications, we used ideation methods to generate several possible solutions, which were narrowed down to our final concept. The final design consists of a rotating brush that spins against the motion of the shingle sheet to remove the loose asphalt fines into a collection system which then captures the removed fines. After testing a variety of bristles, we narrowed our selection to brushes made of Nylon 6-6. The final three bristle types we compared were 0.028” crimped, 0.028” level, and 0.022” level. With our system parameters of 4.5” long bristles, brush speed of 450 rpm, and overlap of approximately 0.07 inches, we recommend 0.022” level to GAF, but note that our testing was insufficient to conclude that the 0.022” level was definitively better. Furthermore, results from our testing suggests that any of the three types may satisfy our specifications. Longevity, overlap, and brush speed are all additional parameters that we recommend testing further

    National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    Get PDF
    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community

    Second Aerospace Environmental Technology Conference

    Get PDF
    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards

    2018 Abstract Booklet

    Get PDF
    Complete Schedule of Events for the 20th Annual Undergraduate Research Symposium at Minnesota State University, Mankato
    corecore