619 research outputs found

    Maximum performance of piezoelectric energy harvesters when coupled to interface circuits

    Get PDF
    This paper presents a complete optimization of a piezoelectric vibration energy harvesting system, including a piezoelectric transducer, a power conditioning circuit with full semiconductor device models, a battery and passive components. To the authors awareness, this is the first time and all of these elements have been integrated into one optimization. The optimization is done within a framework, which models the combined mechanical and electrical elements of a complete piezoelectric vibration energy harvesting system. To realize the optimization, an optimal electrical damping is achieved using a single-supply pre-biasing circuit with a buck converter to charge the battery. The model is implemented in MATLAB and verified in SPICE. The results of the full system model are used to find the mechanical and electrical system parameters required to maximize the power output. The model, therefore, yields the upper bound of the output power and the system effectiveness of complete piezoelectric energy harvesting systems and, hence, provides both a benchmark for assessing the effectiveness of existing harvesters and a framework to design the optimized harvesters. It is also shown that the increased acceleration does not always result in increased power generation as a larger damping force is required, forcing a geometry change of the harvester to avoid exceeding the piezoelectric breakdown voltage. Similarly, increasing available volume may not result in the increased power generation because of the difficulty of resonating the beam at certain frequencies whilst utilizing the entire volume. A maximum system effectiveness of 48% is shown to be achievable at 100 Hz for a 3.38-cm3 generator

    Investigation of electrical properties for cantilever-based piezoelectric energy harvester

    Get PDF
    In the present era, the renewable sources of energy, e.g., piezoelectric materials are in great demand. They play a vital role in the field of micro-electromechanical systems, e.g., sensors and actuators. The cantilever-based piezoelectric energy harvesters are very popular because of their high performance and utilization. In this research-work, an energy harvester model based on a cantilever beam with bimorph PZT-5A, having a substrate layer of structural steel, was presented. The proposed energy scavenging system, designed in COMSOL Multiphysics, was applied to analyze the electrical output as a function of excitation frequencies, load resistances and accelerations. Analytical modeling was employed to measure the output voltage and power under pre-defined conditions of acceleration and load resistance. Experimentation was also performed to determine the relationship between independent and output parameters. Energy harvester is capable of producing the maximum power of 1.16 mW at a resonant frequency of 71 Hz under 1g acceleration, having load resistance of 12 k Omega. It was observed that acceleration and output power are directly proportional to each other. Moreover, the investigation conveys that the experimental results are in good agreement with the numerical results. The maximum error obtained between the experimental and numerical investigation was found to equal 4.3%

    PVDF-TrFE Electroactive Polymer Mechanical-to-Electrical Energy Harvesting Experimental Bimorph Structure

    Get PDF
    Research of electrostrictive polymers has generated new opportunities for harvesting energy from the surrounding environment and converting it into usable electrical energy. Electroactive polymer (EAP) research is one of the new opportunities for harvesting energy from the natural environment and converting it into usable electrical energy. Piezoelectric ceramic based energy harvesting devices tend to be unsuitable for low-frequency mechanical excitations such as human movement. Organic polymers are typically softer and more flexible therefore translated electrical energy output is considerably higher under the same mechanical force. In addition, cantilever geometry is one of the most used structures in piezoelectric energy harvesters, especially for mechanical energy harvesting from vibrations. In order to further lower the resonance frequency of the cantilever microstructure, a proof mass can be attached to the free end of the cantilever. Mechanical analysis of an experimental bimorph structure was provided and led to key design rules for post-processing steps to control the performance of the energy harvester. In this work, methods of materials processing and the mechanical to electrical conversion of vibrational energy into usable energy were investigated. Materials such as polyvinyledenedifluoridetetra-fluoroethylene P(VDF-TrFE) copolymer films (1um thick or less) were evaluated and presented a large relative permittivity and greater piezoelectric β-phase without stretching. Further investigations will be used to identify suitable micro-electromechanical systems (MEMs) structures given specific types of low-frequency mechanical excitations (10-100Hz)

    Parametric Design-Based Modal Damped Vibrational Piezoelectric Energy Harvesters with Arbitrary Proof Mass Offset: Numerical and Analytical Validations

    Get PDF
    This paper focuses on the primary development of novel numerical and analytical techniques of the modal damped vibration energy harvesters with arbitrary proof mass offset. The key equations of electromechanical finite element discretisation using the extended Lagrangian principle are revealed and simplified to give matrix and scalar forms of the coupled system equations, indicating the most relevant numerical technique for the power harvester research. To evaluate the performance of the numerical study, the analytical closed-form boundary value equations have been developed using the extended Hamiltonian principle. The results from the electromechanical frequency response functions (EFRFs) derived from two theoretical studies show excellent agreement with experimental studies. The benefit of the numerical technique is in providing effective and quick predictions for analysing parametric designs and physical properties of piezoelectric materials. Although analytical technique provides a challenging process for analysing the complex smart structure, it shows complementary study for validating the numerical technique

    Performance Enhancement of Cantilever Beam Piezoelectric Energy Harvesters

    Get PDF
    During the last decade, driven by the need, energy harvesting has drawn considerable attention due to the cost-effectiveness and simplicity of the structure. The most important feature or advantage of energy harvesters is their energy sources which are coming from the energy that would be wasted otherwise to the ambient surroundings. Among the three types of energy conversion methodologies, piezoelectric energy harvesters (PEHs) have been highlighted as a self-power source of energy for small wireless sensors with low required power input due to their simple converting structure. While conventional piezoelectric materials possess ideal sensing properties, the microfabrication of these structures typically requires access to the sophisticated equipment and cleanroom facilities. Moreover, the fabrication process is time-consuming and expensive, researchers found it interesting to resort to micro-electromechanical system (MEMS) designs with inexpensive, simple and green-based materials and simple fabrication techniques such as paper. Generally, the paper-based devices have offered significant benefits but their recorded performance is significantly below that of the ones of the commercial smart structures. Their development is still in the early stage of growth and they need to be properly designed to satisfy the general requirements of the commercial products. Geometry optimization, sizing and functionalizing are among the strategies which can be adopted to boost the performance of all types of piezoelectric energy harvesters including the paper-based piezoelectric energy harvesters (PPEH). Therefore, the major contributions of this work are improvement of the performance of piezoelectric energy harvesters using the geometry modification, sizing analysis and functionalizing. In this work, the governing equations of piezoelectric cantilevers based on both Euler-Bernoulli and Timoshenko beam theories are developed and solved using one type of element with a great rate of convergence called superconvergent element (SCE). The theoretical analysis was validated against results published in the open literature and the results indicate that the proposed method yields higher accurate results. Further, the effect of non-uniformity on the electrical output and efficiency of Piezoelectric Energy Harvesters (PEH) are studied. Then, the influence of sizing and application of a series of piezoelectric cantilever energy harvesters on the performance of structure are studied. The effect of the shape of the piezoelectric elements is also investigated below. Eventually, development of functionally graded piezoelectric materials (FGPMs) for non-uniform beams are presented to evaluate the effect of functionalizing

    Vibrational energy harvesting for sensors in vehicles

    Get PDF
    The miniaturization of semiconductor technology and reduction in power requirements have begun to enable wireless self-sufficient devices, powered by ambient energy. To date the primary application lies in generating and transmitting sensory data. The number of sensors and their applications in automotive vehicles has grown drastically in the last decade, a trend that seems to continue still. Wireless self-powered sensors can facilitate current sensor systems by removing the need for cabling and may enable additional applications. These systems have the potential to provide new avenues of optimization in safety and performance.This thesis delves into the topic of vibrations as ambient energy source, primarily for sensors in automotive vehicles. The transduction of small amounts of vibrational, or kinetic, energy to electrical power, also known as vibrational energy harvesting, is an extensive field of research with a plethora of inventions. A short review is given for energy harvesters, in an automotive context, utilizing transduction through either the piezoelectric effect or magnetic induction. Two practical examples, for ambient vibration harvesting in vehicles, are described in more detail. The first is a piezoelectric beam for powering a strain sensor on the engines rotating flexplate. It makes combined use of centrifugal force, gravitational pull and random vibrations to enhance performance and reduce required system size. The simulated power output is 370 \ub5W at a rotation frequency of 10.5 Hz, with a bandwidth of 2.44 Hz. The second example is an energy harvesting unit placed on a belt buckle. It implements magnetic induction by the novel concept of a spring balance air gap of a magnetic circuit, to efficiently harvest minute vibrations. Simulations show the potential to achieve 52 \ub5W under normal road conditions driving at 70 km/h. Theoretical modeling of these systems is also addressed. Fundamental descriptions of the lumped and distributed models are given. Based on the lumped models of the piezoelectric energy harvester (PEH) and the electromagnetic energy harvester (EMEH), a unified model is described and analyzed. New insights are gained regarding the pros and cons of the two types of energy harvester run at either resonance or anti-resonance. A numerical solution is given for the exact boundary of dimensionless quality factor and dimensionless intrinsic resistance, at which the system begins to exhibit anti-resonance. Regarding the maximum achievable power, the typical PEH is favored when running the system in anti-resonance and the typical EMEH is favored at resonance. The described modeling considers all parameters of the lumped model and thus provides a useful tool for developing vibrational energy harvester prototypes

    Development of MEMS Piezoelectric Vibration Energy Harvesters with Wafer-Level Integrated Tungsten Proof-Mass for Ultra Low Power Autonomous Wireless Sensors

    Get PDF
    La génération d’énergie localisée et à petite échelle, par transformation de l’énergie vibratoire disponible dans l’environnement, est une solution attrayante pour améliorer l’autonomie de certains noeuds de capteurs sans-fil pour l’Internet des objets (IoT). Grâce à des microdispositifs inertiels résonants piézoélectriques, il est possible de transformer l’énergie mécanique en électricité. Cette thèse présente une étude exhaustive de cette technologie et propose un procédé pour fabriquer des microgénérateurs MEMS offrant des performances surpassant l’état de l’art. On présente d’abord une revue complète des limites physiques et technologiques pour identifier le meilleur chemin d’amélioration. En évaluant les approches proposées dans la littérature (géométrie, architecture, matériaux, circuits, etc.), nous suggérons des métriques pour comparer l’état de l’art. Ces analyses démontrent que la limite fondamentale est l’énergie absorbée par le dispositif, car plusieurs des solutions existantes répondent déjà aux autres limites. Pour un générateur linéaire résonant, l’absorption d’énergie dépend donc des vibrations disponibles, mais aussi de la masse du dispositif et de son facteur de qualité. Pour orienter la conception de prototypes, nous avons réalisé une étude sur le potentiel des capteurs autonomes dans une automobile. Nous avons évalué une liste des capteurs présents sur un véhicule pour leur compatibilité avec cette technologie. Nos mesures de vibrations sur un véhicule en marche aux emplacements retenus révèlent que l’énergie disponible pour un dispositif linéaire résonant MEMS se situe entre 30 à 150 Hz. Celui-ci pourrait produire autour de 1 à 10 μW par gramme. Pour limiter la taille d’un générateur MEMS pouvant produire 10 μW, il faut une densité supérieure à celle du silicium, ce qui motive l’intégration du tungstène. L’effet du tungstène sur la sensibilité du dispositif est évident, mais nous démontrons également que l’usage de ce matériau permet de réduire l’impact de l’amortissement fluidique sur le facteur de qualité mécanique Qm. En fait, lorsque l’amortissement fluidique domine, ce changement peut améliorer Qm d’un ordre de grandeur, passant de 103 à 104 dans l’air ambiant. Par conséquent, le rendement du dispositif est amélioré sans utiliser un boîtier sous vide. Nous proposons ensuite un procédé de fabrication qui intègre au niveau de la tranche des masses de tungstène de 500 μm d’épais. Ce procédé utilise des approches de collage de tranches et de gravure humide du métal en deux étapes. Nous présentons chaque bloc de fabrication réalisé pour démontrer la faisabilité du procédé, lequel a permis de fabriquer plusieurs prototypes. Ces dispositifs ont été testés en laboratoire, certains démontrant des performances records en terme de densité de puissance normalisée. Notre meilleur design se démarque par une métrique de 2.5 mW-s-1/(mm3(m/s2)2), soit le meilleur résultat répertorié dans l’état de l’art. Avec un volume de 3.5 mm3, il opère à 552.7 Hz et produit 2.7 μW à 1.6 V RMS à partir d’une accélération de 1 m/s2. Ces résultats démontrent que l’intégration du tungstène dans les microgénérateurs MEMS est très avantageuse et permet de s’approcher davantage des requis des applications réelles.Small scale and localized power generation, using vibration energy harvesting, is considered as an attractive solution to enhance the autonomy of some wireless sensor nodes used in the Internet of Things (IoT). Conversion of the ambient mechanical energy into electricity is most often done through inertial resonant piezoelectric microdevices. This thesis presents an extensive study of this technology and proposes a process to fabricate MEMS microgenerators with record performances compared to the state of the art. We first present a complete review of the physical and technological limits of this technology to asses the best path of improvement. Reported approaches (geometries, architectures, materials, circuits) are evaluated and figures of merit are proposed to compare the state of the art. These analyses show that the fundamental limit is the absorbed energy, as most proposals to date partially address the other limits. The absorbed energy depends on the level of vibrations available, but also on the mass of the device and its quality factor for a linear resonant generator. To guide design of prototypes, we conducted a study on the potential of autonomous sensors in vehicles. A survey of sensors present on a car was realized to estimate their compatibility with energy harvesting technologies. Vibration measurements done on a running vehicle at relevant locations showed that the energy available for MEMS devices is mostly located in a frequency range of 30 to 150 Hz and could generate power in the range of 1-10 μW per gram from a linear resonator. To limit the size of a MEMS generator capable of producing 10 μW, a higher mass density compared to silicon is needed, which motivates the development of a process that incorporates tungsten. Although the effect of tungsten on the device sensitivity is well known, we also demonstrate that it reduces the impact of the fluidic damping on the mechanical quality factor Qm. If fluidic damping is dominant, switching to tungsten can improve Qm by an order of magnitude, going from 103 to 104 in ambient air. As a result, the device efficiency is improved despite the lack of a vacuum package. We then propose a fabrication process flow to integrate 500 μm thick tungsten masses at the wafer level. This process combines wafer bonding with a 2-step wet metal etching approach. We present each of the fabrication nodes realized to demonstrate the feasibility of the process, which led to the fabrication of several prototypes. These devices are tested in the lab, with some designs demonstrating record breaking performances in term of normalized power density. Our best design is noteworthy for its figure of merit that is around 2.5 mW-s-1/(mm3(m/s2)2), which is the best reported in the state of the art. With a volume of 3.5 mm3, it operates at 552.7 Hz and produces 2.7 μW at 1.6 V RMS from an acceleration of 1 m/s2. These results therefore show that tungsten integration in MEMS microgenerators is very advantageous, allowing to reduce the gap with needs of current applications
    • …
    corecore