167 research outputs found

    Detecting the Optic Disc and Optic Cup Boundary for Glaucoma Screening A Review

    Get PDF
    Glaucoma is the leading cause of irreversible blindness in the world. Assessment of damaged optic nerve head is both more promising, and superior to IOP measurement or visual field testing for glaucoma screening. This paper present here the automatic glaucoma screening using CDR from 2 D fundus images using superpixel classification. . We compute centre surround statistics from super pixels and unify them with histograms for disc and cup segmentation. Based on the segmented disc and cup, CDR is computed for glaucoma screening. In addition, the proposed method computes a self - assessment reliability score for its disc segmentation result

    Segmentation of optic disc in retinal images for glaucoma diagnosis by saliency level set with enhanced active contour model

    Get PDF
    Glaucoma is an ophthalmic disease which is among the chief causes of visual impairment across the globe. The clarity of the optic disc (OD) is crucial for recognizing glaucoma. Since existing methods are unable to successfully integrate multi-view information derived from shape and appearance to precisely explain OD for segmentation, this paper proposes a saliency-based level set with an enhanced active contour method (SL-EACM), a modified locally statistical active contour model, and entropy-based optical disc localization. The significant contributions are that i) the SL-EACM is introduced to address the often noticed problem of intensity inhomogeneity brought on by defects in imaging equipment or fluctuations in lighting; ii) to prevent the integrity of the OD structures from being compromised by pathological alterations and artery blockage, local image probability data is included from a multi-dimensional feature space around the region of interest in the model; and iii) the model incorporates prior shape information into the technique, for enhancing the accuracy in identifying the OD structures from surrounding regions. Public databases such as CHASE_DB, DRIONS-DB, and Drishti-GS are used to evaluate the proposed model. The findings from numerous trials demonstrate that the proposed model outperforms state-of-the-art approaches in terms of qualitative and quantitative outcomes

    Fusion based analysis of ophthalmologic image data

    Get PDF
    summary:The paper presents an overview of image analysis activities of the Brno DAR group in the medical application area of retinal imaging. Particularly, illumination correction and SNR enhancement by registered averaging as preprocessing steps are briefly described; further mono- and multimodal registration methods developed for specific types of ophthalmological images, and methods for segmentation of optical disc, retinal vessel tree and autofluorescence areas are presented. Finally, the designed methods for neural fibre layer detection and evaluation on retinal images, utilising different combined texture analysis approaches and several types of classifiers, are shown. The results in all the areas are shortly commented on at the respective sections. In order to emphasise methodological aspects, the methods and results are ordered according to consequential phases of processing rather then divided according to individual medical applications

    Analysis of Retinal Image Data to Support Glaucoma Diagnosis

    Get PDF
    Fundus kamera je široce dostupné zobrazovací zařízení, které umožňuje relativně rychlé a nenákladné vyšetření zadního segmentu oka – sítnice. Z těchto důvodů se mnoho výzkumných pracovišť zaměřuje právě na vývoj automatických metod diagnostiky nemocí sítnice s využitím fundus fotografií. Tato dizertační práce analyzuje současný stav vědeckého poznání v oblasti diagnostiky glaukomu s využitím fundus kamery a navrhuje novou metodiku hodnocení vrstvy nervových vláken (VNV) na sítnici pomocí texturní analýzy. Spolu s touto metodikou je navržena metoda segmentace cévního řečiště sítnice, jakožto další hodnotný příspěvek k současnému stavu řešené problematiky. Segmentace cévního řečiště rovněž slouží jako nezbytný krok předcházející analýzu VNV. Vedle toho práce publikuje novou volně dostupnou databázi snímků sítnice se zlatými standardy pro účely hodnocení automatických metod segmentace cévního řečiště.Fundus camera is widely available imaging device enabling fast and cheap examination of the human retina. Hence, many researchers focus on development of automatic methods towards assessment of various retinal diseases via fundus images. This dissertation summarizes recent state-of-the-art in the field of glaucoma diagnosis using fundus camera and proposes a novel methodology for assessment of the retinal nerve fiber layer (RNFL) via texture analysis. Along with it, a method for the retinal blood vessel segmentation is introduced as an additional valuable contribution to the recent state-of-the-art in the field of retinal image processing. Segmentation of the blood vessels also serves as a necessary step preceding evaluation of the RNFL via the proposed methodology. In addition, a new publicly available high-resolution retinal image database with gold standard data is introduced as a novel opportunity for other researches to evaluate their segmentation algorithms.

    An Efficient Approach of Optic Disc Normalization and Segmentation for Glaucoma Detection

    Get PDF
    Glaucoma is considered as one of the major eye disease which will lead to vision loss if it is not diagnosed at a right time. Hence it is required to recognize the stage of the disease as early as possible. The earlier methods called Intra ocular pressure(IOP) and Visual Field Test have a disadvantage of requirement of special equipment which will be available in only specialized hospitals and provide low accuracy. In this paper effective method called Sparse Dissimilarity Constrained Coding (SDC) have been used where it considers optic disc and cup called cup to disc ratio (CDR). In this approach the optic disc is localized and segmented which is followed by cup segmentation. From which the area of optic disc and optic cup is obtained. The method gives accurate CDR results and it is well suited for more population. From the obtained ratio the stage of the disease can be well predicted and suitable treatment required can be suggested. The retinal fundus images that are used for the method will be easily available in almost all the hospitals and medical centers for comparing the result with the reference CDR ratios. The method provides efficient and reliable result compared to the manual method. Hence the proposed method is an effective approach for glaucoma detection

    Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review

    Get PDF
    Glaucoma is a group of eye diseases that have common traits such as, high eye pressure, damage to the Optic Nerve Head and gradual vision loss. It affects peripheral vision and eventually leads to blindness if left untreated. The current common methods of pre-diagnosis of Glaucoma include measurement of Intra-Ocular Pressure (IOP) using Tonometer, Pachymetry, Gonioscopy; which are performed manually by the clinicians. These tests are usually followed by Optic Nerve Head (ONH) Appearance examination for the confirmed diagnosis of Glaucoma. The diagnoses require regular monitoring, which is costly and time consuming. The accuracy and reliability of diagnosis is limited by the domain knowledge of different ophthalmologists. Therefore automatic diagnosis of Glaucoma attracts a lot of attention.This paper surveys the state-of-the-art of automatic extraction of anatomical features from retinal images to assist early diagnosis of the Glaucoma. We have conducted critical evaluation of the existing automatic extraction methods based on features including Optic Cup to Disc Ratio (CDR), Retinal Nerve Fibre Layer (RNFL), Peripapillary Atrophy (PPA), Neuroretinal Rim Notching, Vasculature Shift, etc., which adds value on efficient feature extraction related to Glaucoma diagnosis. © 2013 Elsevier Ltd

    Computational Analysis of Fundus Images: Rule-Based and Scale-Space Models

    Get PDF
    Fundus images are one of the most important imaging examinations in modern ophthalmology because they are simple, inexpensive and, above all, noninvasive. Nowadays, the acquisition and storage of highresolution fundus images is relatively easy and fast. Therefore, fundus imaging has become a fundamental investigation in retinal lesion detection, ocular health monitoring and screening programmes. Given the large volume and clinical complexity associated with these images, their analysis and interpretation by trained clinicians becomes a timeconsuming task and is prone to human error. Therefore, there is a growing interest in developing automated approaches that are affordable and have high sensitivity and specificity. These automated approaches need to be robust if they are to be used in the general population to diagnose and track retinal diseases. To be effective, the automated systems must be able to recognize normal structures and distinguish them from pathological clinical manifestations. The main objective of the research leading to this thesis was to develop automated systems capable of recognizing and segmenting retinal anatomical structures and retinal pathological clinical manifestations associated with the most common retinal diseases. In particular, these automated algorithms were developed on the premise of robustness and efficiency to deal with the difficulties and complexity inherent in these images. Four objectives were considered in the analysis of fundus images. Segmentation of exudates, localization of the optic disc, detection of the midline of blood vessels, segmentation of the vascular network and detection of microaneurysms. In addition, we also evaluated the detection of diabetic retinopathy on fundus images using the microaneurysm detection method. An overview of the state of the art is presented to compare the performance of the developed approaches with the main methods described in the literature for each of the previously described objectives. To facilitate the comparison of methods, the state of the art has been divided into rulebased methods and machine learningbased methods. In the research reported in this paper, rulebased methods based on image processing methods were preferred over machine learningbased methods. In particular, scalespace methods proved to be effective in achieving the set goals. Two different approaches to exudate segmentation were developed. The first approach is based on scalespace curvature in combination with the local maximum of a scalespace blob detector and dynamic thresholds. The second approach is based on the analysis of the distribution function of the maximum values of the noise map in combination with morphological operators and adaptive thresholds. Both approaches perform a correct segmentation of the exudates and cope well with the uneven illumination and contrast variations in the fundus images. Optic disc localization was achieved using a new technique called cumulative sum fields, which was combined with a vascular enhancement method. The algorithm proved to be reliable and efficient, especially for pathological images. The robustness of the method was tested on 8 datasets. The detection of the midline of the blood vessels was achieved using a modified corner detector in combination with binary philtres and dynamic thresholding. Segmentation of the vascular network was achieved using a new scalespace blood vessels enhancement method. The developed methods have proven effective in detecting the midline of blood vessels and segmenting vascular networks. The microaneurysm detection method relies on a scalespace microaneurysm detection and labelling system. A new approach based on the neighbourhood of the microaneurysms was used for labelling. Microaneurysm detection enabled the assessment of diabetic retinopathy detection. The microaneurysm detection method proved to be competitive with other methods, especially with highresolution images. Diabetic retinopathy detection with the developed microaneurysm detection method showed similar performance to other methods and human experts. The results of this work show that it is possible to develop reliable and robust scalespace methods that can detect various anatomical structures and pathological features of the retina. Furthermore, the results obtained in this work show that although recent research has focused on machine learning methods, scalespace methods can achieve very competitive results and typically have greater independence from image acquisition. The methods developed in this work may also be relevant for the future definition of new descriptors and features that can significantly improve the results of automated methods.As imagens do fundo do olho são hoje um dos principais exames imagiológicos da oftalmologia moderna, pela sua simplicidade, baixo custo e acima de tudo pelo seu carácter nãoinvasivo. A aquisição e armazenamento de imagens do fundo do olho com alta resolução é também relativamente simples e rápida. Desta forma, as imagens do fundo do olho são um exame fundamental na identificação de alterações retinianas, monitorização da saúde ocular, e em programas de rastreio. Considerando o elevado volume e complexidade clínica associada a estas imagens, a análise e interpretação das mesmas por clínicos treinados tornase uma tarefa morosa e propensa a erros humanos. Assim, há um interesse crescente no desenvolvimento de abordagens automatizadas, acessíveis em custo, e com uma alta sensibilidade e especificidade. Estas devem ser robustas para serem aplicadas à população em geral no diagnóstico e seguimento de doenças retinianas. Para serem eficazes, os sistemas de análise têm que conseguir detetar e distinguir estruturas normais de sinais patológicos. O objetivo principal da investigação que levou a esta tese de doutoramento é o desenvolvimento de sistemas automáticos capazes de detetar e segmentar as estruturas anatómicas da retina, e os sinais patológicos retinianos associados às doenças retinianas mais comuns. Em particular, estes algoritmos automatizados foram desenvolvidos segundo as premissas de robustez e eficácia para lidar com as dificuldades e complexidades inerentes a estas imagens. Foram considerados quatro objetivos de análise de imagens do fundo do olho. São estes, a segmentação de exsudados, a localização do disco ótico, a deteção da linha central venosa dos vasos sanguíneos e segmentação da rede vascular, e a deteção de microaneurismas. De acrescentar que usando o método de deteção de microaneurismas, avaliouse também a capacidade de deteção da retinopatia diabética em imagens do fundo do olho. Para comparar o desempenho das metodologias desenvolvidas neste trabalho, foi realizado um levantamento do estado da arte, onde foram considerados os métodos mais relevantes descritos na literatura para cada um dos objetivos descritos anteriormente. Para facilitar a comparação entre métodos, o estado da arte foi dividido em metodologias de processamento de imagem e baseadas em aprendizagem máquina. Optouse no trabalho de investigação desenvolvido pela utilização de metodologias de análise espacial de imagem em detrimento de metodologias baseadas em aprendizagem máquina. Em particular, as metodologias baseadas no espaço de escalas mostraram ser efetivas na obtenção dos objetivos estabelecidos. Para a segmentação de exsudados foram usadas duas abordagens distintas. A primeira abordagem baseiase na curvatura em espaço de escalas em conjunto com a resposta máxima local de um detetor de manchas em espaço de escalas e limiares dinâmicos. A segunda abordagem baseiase na análise do mapa de distribuição de ruído em conjunto com operadores morfológicos e limiares adaptativos. Ambas as abordagens fazem uma segmentação dos exsudados de elevada precisão, além de lidarem eficazmente com a iluminação nãouniforme e a variação de contraste presente nas imagens do fundo do olho. A localização do disco ótico foi conseguida com uma nova técnica designada por campos de soma acumulativos, combinada com métodos de melhoramento da rede vascular. O algoritmo revela ser fiável e eficiente, particularmente em imagens patológicas. A robustez do método foi verificada pela sua avaliação em oito bases de dados. A deteção da linha central dos vasos sanguíneos foi obtida através de um detetor de cantos modificado em conjunto com filtros binários e limiares dinâmicos. A segmentação da rede vascular foi conseguida com um novo método de melhoramento de vasos sanguíneos em espaço de escalas. Os métodos desenvolvidos mostraram ser eficazes na deteção da linha central dos vasos sanguíneos e na segmentação da rede vascular. Finalmente, o método para a deteção de microaneurismas assenta num formalismo de espaço de escalas na deteção e na rotulagem dos microaneurismas. Para a rotulagem foi utilizada uma nova abordagem da vizinhança dos candidatos a microaneurismas. A deteção de microaneurismas permitiu avaliar também a deteção da retinopatia diabética. O método para a deteção de microaneurismas mostrou ser competitivo quando comparado com outros métodos, em particular em imagens de alta resolução. A deteção da retinopatia diabética exibiu um desempenho semelhante a outros métodos e a especialistas humanos. Os trabalhos descritos nesta tese mostram ser possível desenvolver uma abordagem fiável e robusta em espaço de escalas capaz de detetar diferentes estruturas anatómicas e sinais patológicos da retina. Além disso, os resultados obtidos mostram que apesar de a pesquisa mais recente concentrarse em metodologias de aprendizagem máquina, as metodologias de análise espacial apresentam resultados muito competitivos e tipicamente independentes do equipamento de aquisição das imagens. As metodologias desenvolvidas nesta tese podem ser importantes na definição de novos descritores e características, que podem melhorar significativamente o resultado de métodos automatizados

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Vessels Classification in Retinal Images by Graph-Based Approach

    Get PDF
    The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. Classifier classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. Our method out performs recent approaches for A/V classification. Normal retinal images vessels are segmented using the morphological operations and then using graph trace algorithm for identification the center line of the vessels and trace the pixel values as a feature and use the KNN classifier to classify the feature and assign which is the artery and which is the vein in retinal image. From features we extract the thickness of the vessels to identify the disease details. DOI: 10.17762/ijritcc2321-8169.150316
    corecore