1,132 research outputs found

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed

    Radar systems for the water resources mission, volume 2

    Get PDF
    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence

    Quantifying Interpretability Loss due to Image Compression

    Get PDF

    Image Quality Modeling and Characterization of Nyquist Sampled Framing Systems with Operational Considerations for Remote Sensing

    Get PDF
    The trade between detector and optics performance is often conveyed through the Q metric, which is defined as the ratio of detector sampling frequency and optical cutoff frequency. Historically sensors have operated at Q~1, which introduces aliasing but increases the system modulation transfer function (MTF) and signal-to-noise ratio (SNR). Though mathematically suboptimal, such designs have been operationally ideal when considering system parameters such as pointing stability and detector performance. Substantial advances in read noise and quantum efficiency of modern detectors may compensate for the negative aspects associated with balancing detector/optics performance, presenting an opportunity to revisit the potential for implementing Nyquist-sampled (Q~2) sensors. A digital image chain simulation is developed and validated against a laboratory testbed using objective and subjective assessments. Objective assessments are accomplished by comparison of the modeled MTF and measurements from slant-edge photographs. Subjective assessments are carried out by performing a psychophysical study where subjects are asked to rate simulation and testbed imagery against a Delta-NIIRS scale with the aid of a marker set. Using the validated model, additional test cases are simulated to study the effects of increased detector sampling on image quality with operational considerations. First, a factorial experiment using Q-sampling, pointing stability, integration time, and detector performance is conducted to measure the main effects and interactions of each on the response variable, Delta-NIIRS. To assess the fidelity of current models, variants of the General Image Quality Equation (GIQE) are evaluated against subject-provided ratings and two modied GIQE versions are proposed. Finally, using the validated simulation and modified IQE, trades are conducted to ascertain the feasibility of implementing Q~2 designs in future systems

    Perceptual Image Quality Of Launch Vehicle Imaging Telescopes

    Get PDF
    A large fleet (in the hundreds) of high quality telescopes are used for tracking and imaging of launch vehicles during ascent from Cape Canaveral Air Force Station and Kennedy Space Center. A maintenance tool has been development for use with these telescopes. The tool requires rankings of telescope condition in terms of the ability to generate useful imagery. It is thus a case of ranking telescope conditions on the basis of the perceptual image quality of their imagery. Perceptual image quality metrics that are well-correlated to observer opinions of image quality have been available for several decades. However, these are quite limited in their applications, not being designed to compare various optical systems. The perceptual correlation of the metrics implies that a constant image quality curve (such as the boundary between two qualitative categories labeled as excellent and good) would have a constant value of the metric. This is not the case if the optical system parameters (such as object distance or aperture diameter) are varied. No published data on such direct variation is available and this dissertation presents an investigation made into the perceptual metric responses as system parameters are varied. This investigation leads to some non-intuitive conclusions. The perceptual metrics are reviewed as well as more common metrics and their inability to perform in the necessary manner for the research of interest. Perceptual test methods are also reviewed, as is the human visual system. iv Image formation theory is presented in a non-traditional form, yielding the surprising result that perceptual image quality is invariant under changes in focal length if the final displayed image remains constant. Experimental results are presented of changes in perceived image quality as aperture diameter is varied. Results are analyzed and shortcomings in the process and metrics are discussed. Using the test results, predictions are made about the form of the metric response to object distance variations, and subsequent testing was conducted to validate the predictions. The utility of the results, limitations of applicability, and the immediate ability to further generalize the results is presented

    Earth resources: A continuing bibliography with indexes (issue 52)

    Get PDF
    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Space photography and the exploration of Mars

    Get PDF
    A general exposition of the scientific potentialities and analytic framework of space photography is presented using the photography of Mars from flybys and orbiters as the principal example. Space photography is treated here as a communication process in which planetary scene information is communicated to the eye-brain receiver of earth-based interpreters. The salient parameters of this process are: (1) total information returned, (2) surface resolution, and (3) a priori knowledge regarding the planetary surface observed

    Agricultural land systems : modelling past, present and future regional dynamics

    Get PDF
    This thesis arises from the understanding of how the integration of concepts, tools, techniques, and methods from geographic information science (GIS) can provide a formalised knowledge base for agricultural land systems in response to future agricultural and food system challenges. To that end, this thesis focuses on understanding the potential application of GIS-based approaches and available spatial data sources for modelling regional agricultural land-use and production dynamics in Portugal. The specific objectives of this thesis are addressed in seven chapters in Parts II through V, each corresponding to one scientific article that was either published or is being considered for publication in peer-reviewed international scientific journals. In Part II, Chapter 2 summarises the body of knowledge and provides the context for the contribution of this thesis within the scientific domain of agricultural land systems. In Part III, Chapters 3 and 4 explore remotely sensed and Volunteered Geographic Information (VGI) data, multitemporal and multisensory approaches, and a variety of statistical methods for mapping, quantifying, and assessing regional agricultural land dynamics in the Beja district. In Part IV, Chapters 5–7 explore the CA-Markov model, Markov chain model, machine learning, and model-agnostic approach, as well as a set of spatial metrics and statistical methods for modelling the factors and spatiotemporal changes of agricultural land use in the Beja district. In Part V, Chapter 8 explores an area-weighting GIS-based technique, a spatiotemporal data cube, and statistical methods to model the spatial distribution across time for regional agricultural production in Portugal. The case studies in the thesis contribute practical and theoretical knowledge by demonstrating the strengths and limitations of several GIS-based approaches. Together, the case studies demonstrate the underlying principles that underpin each approach in a way that allows us to infer their potentiality and appropriateness for modelling regional agricultural land-use and production dynamics, stimulating further research along this line. Generally, this thesis partly reflects the state-of-art of land-use modelling and contribute significantly to the introduction of advances in agricultural system modelling research and land-system science

    Earth Resources: A continuing bibliography with indexes, issue 36

    Get PDF
    This bibliography lists 576 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between October 1 and December 31, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore