196 research outputs found

    Eye Tracking Consumer Purchase Behavior Within Physical and Virtual Environments

    Get PDF
    Understanding how consumers observe and make purchase decisions within a retail context is now both accessible and efficient through the process of eye tracking. Eye tracking package design aesthetics helps us understand and predict what consumers are looking at, and how likely a package might be selected. Typically, this research is conducted in an immersive retail setting where consumers can shop as they would in a normal store-shopping context. A store is stocked with products where a participant in the study shops throughout while wearing an eye tracker to gather data on what their attention fixates on within a given set of shelves. Although a physical store provides the most realistic context, a virtual store could create a more economical, cost effective, and customizable solution for measuring consumer visual attention from packaging design aesthetics. Beginning with CUshop Consumer Experience Laboratory, a virtual store design and context was established by replicating existing fixtures in CUshopTM. Using the virtual technology available at the Sonoco Institute of Packaging Design and Graphics, a digital replication of CUshopTM was created. This began by 3D modeling the store along with generating the exact content to be displayed using real time rendering software. To investigate the process of measuring consumer attention in each environment, the same study was conducted in both stores looking at shelf performance of eleven different barbecue sauce brands. Gaze data, travel time, purchase decision and presence survey scores from a modified Witmer-Singer survey helped demonstrate the feasibility of gathering valid results from a virtual store context. Results indicated that there was not enough evidence to prove a comparison between the physical and virtual store experiments. Presence scores also did not indicate significant differences between either store environments. Analysis suggests that with a larger participant population and more immersive hardware, such as head mounted displays, eye tracking in virtual stores could be a valid process to complement studies already being conducted in real store contexts

    2 1/2, Dimensional (2 1/2 D) Web-Based Virtual Walkthrough (VW) of Chancellor Hall (CH) and Undercroft of Universiti Teknologi PETRONAS (UTP)

    Get PDF
    This project will focus on the development of a 2 Yz D Virtual Walkthrough of Chancellor Hall and Undercroft ofUTP. The virtual walkthrough is developed in 2 'h dimensional in order to reduce the size of the virtual walkthrough. Besides that, the virtual walkthrough is available on the Internet so that it can be easily obtainable and accessible by people. The existing visualization of both CH and Undercroft of UTP does not offer sufficient illustration. The insufficiency leads to the issue of getting lost among individuals whom is coming for the first time to UTP. The insufficiency also can lead to dissatisfaction particularly among the potential sponsors of an event when the location provided which is where the event been held does not meet their expectation. Therefore, this project is meant to provide a virtual visualization to mainly the individuals who have never been to the CH and Undercroft of UTP due to distance constraint. Besides that, this project aims to provide an easy understanding and initial direction on how to move from one location to another location as well as the facilities within CHand Undercroft ofUTP by providing a better illustration than the existing visualization

    Automatic Speed Control For Navigation in 3D Virtual Environment

    Get PDF
    As technology progresses, the scale and complexity of 3D virtual environments can also increase proportionally. This leads to multiscale virtual environments, which are environments that contain groups of objects with extremely unequal levels of scale. Ideally the user should be able to navigate such environments efficiently and robustly. Yet, most previous methods to automatically control the speed of navigation do not generalize well to environments with widely varying scales. I present an improved method to automatically control the navigation speed of the user in 3D virtual environments. The main benefit of my approach is that automatically adapts the navigation speed in multi-scale environments in a manner that enables efficient navigation with maximum freedom, while still avoiding collisions. The results of a usability tests show a significant reduction in the completion time for a multi-scale navigation task

    Virtual reality and body rotation: 2 flight experiences in comparison

    Get PDF
    Embodied interfaces, represented by devices that incorporate bodily motion and proprioceptive stimulation, are promising for Virtual Reality (VR) because they can improve immersion and user experience while at the same time reducing simulator sickness compared to more traditional handheld interfaces (e.g.,gamepads). The aim of the study is to evaluate a novel embodied interface called VitruvianVR. The machine is composed of two separate rings that allow its users to bodily rotate onto three different axes. The suitability of the VitruvianVR was tested in a Virtual Reality flight scenario. In order to reach the goal we compared the VitruvianVR to a gamepad using perfomance measures (i.e., accuracy, fails), head movements and position of the body. Furthermore, a series of data coming from questionnaires about sense of presence, user experience, cognitive load, usability and cybersickness was retrieved.Embodied interfaces, represented by devices that incorporate bodily motion and proprioceptive stimulation, are promising for Virtual Reality (VR) because they can improve immersion and user experience while at the same time reducing simulator sickness compared to more traditional handheld interfaces (e.g.,gamepads). The aim of the study is to evaluate a novel embodied interface called VitruvianVR. The machine is composed of two separate rings that allow its users to bodily rotate onto three different axes. The suitability of the VitruvianVR was tested in a Virtual Reality flight scenario. In order to reach the goal we compared the VitruvianVR to a gamepad using perfomance measures (i.e., accuracy, fails), head movements and position of the body. Furthermore, a series of data coming from questionnaires about sense of presence, user experience, cognitive load, usability and cybersickness was retrieved

    Development of a model based on virtual reality for the evaluation of behavioral compliance with warnings and wayfinding contexts

    Get PDF
    Virtual Reality (VR) when framed in adequate methodologies, has an ample field of application for Ergonomics and for Design, since it allows to analyze and understand how people interaction with simulated situations in Virtual Environments (VEs). As such, it is of extreme importance for research and the practice of Ergonomics, to understand how it is possible to optimize, create, implement and evaluate solutions based in VEs in different contexts, including dangerous one, in particular those that can place in risk the physical integrity of people. These VEs can be used to study the Human behavior in critical situations, which is important when projecting products and systems that involve dangers to the users that would be difficult to study otherwise. In this context, this project has as its general objective the study of the factors that influence the development of VEs for VR and in the implementation of solutions (with a focus on the software and hardware) that better can correspond to the development of this type of studies, namely in studies of behavioral compliance with warnings and in studies of wayfinding. The methodological proposal described in this document focuses in a User-Centered Design (UCD) perspective, which involved the participation of the users, in the different phases of development of the project. As a result, it was developed and evaluated software and hardware solutions for the understanding and evaluation of the factors associated to the study of Human behavior, namely in behavioral compliance with warnings and in wayfinding contexts. It was also studied the best solutions for interaction and navigation in VEs, that correspond to high levels of presence, which is a fundamental aspect in behavioral compliance with warnings and wayfinding studies that use VR as a support tool. With this purpose, two navigational interfaces were developed (i.e., Balance Board and Walk-in-Place), also in a UCD perspective, to guarantee a constant cycle of tests and improvement of the implementations among the users. A comparative study was made between these two navigational interfaces and another that is commonly used in studies with VR (i.e., a Joystick). This comparative study was conducted in a context of evaluation of behavioral compliance with warnings and performance variables were analyzed, as well as the levels of presence in the different navigational interfaces. There were no statistically significant differences in the levels of presence or in the behavioral compliance between the three navigational interfaces. However, statistically significant differences were found in several performance variables (e.g., average speed, total distance). Future directions for the research are also discussed.A Realidade Virtual (RV) quando enquadrada em metodologias adequadas, tem um campo de aplicação alargado para a Ergonomia e o Design, visto permitir analisar e compreender como as pessoas interagem com situações simuladas em Ambientes Virtuais (AVs). Desta forma, é de extrema importância para a investigação ou prática da Ergonomia, perceber como se pode optimizar, construir, implementar e avaliar soluções baseadas em AVs em diferentes contextos, incluindo contextos perigosos, particularmente aqueles que podem colocar em risco a integridade física das pessoas. Estes AVs podem ser usados para estudar o comportamento Humano em situações críticas, o que é importante quando se projecta produtos e sistemas que envolvam perigos para os utilizadores que de outra forma seria muito difícil avaliar. Neste contexto, este projecto tem como objectivo geral o estudo dos factores que influenciam o desenvolvimento de ambientes para Realidade Virtual e na implementação de soluções (com um foco maior no software e hardware) que melhor possam corresponder ao desenvolvimento deste tipo de estudos, nomeadamente em estudos de consonância comportamental com avisos de segurança e estudos de wayfinding. A proposta metodológica descrita neste documento foca-se numa perspectiva de Design Centrado no Utilizador (DCU), que envolveu a participação dos utilizadores, nas várias fases de desenvolvimento do projecto. Como resultado, desenvolveu-se e avaliou-se soluções de software e hardware para a compreensão e avaliação dos factores associados ao estudo do comportamento Humano, nomeadamente para a consonância comportamental com avisos de segurança e para situações de wayfinding. Foram também estudadas as melhores soluções para interacção e navegação em AVs, que correspondam a níveis de presença elevados, aspecto fundamental em estudos de consonância comportamental com avisos de segurança e em estudos de wayfinding que usam RV. Com este intuito, foram desenvolvidas duas interfaces de navegação para Realidade Virtual (i.e., Balance Board e Walk-in-Place), também numa perspectiva de DCU, para garantir um constante ciclo de testes e aperfeiçoamento das implementações junto dos utilizadores. Foi realizado um estudo comparativo entre estas duas interfaces de navegação e uma outra que é utilizada mais frequentemente em estudos com RV (i.e., um Joystick). Este estudo comparativo realizou-se num contexto de avaliação da consonância comportamental com avisos de segurança e foram analisadas variáveis de desempenho, assim como os níveis de presença das diferentes interfaces de navegação. Não se observaram diferenças estatisticamente significativas em relação aos níveis de presença nem em relação à consonância comportamental entre as três interfaces de navegação. No entanto, foram encontradas diferenças estatisticamente significativas em várias variáveis de desempenho (e.g., velocidade média, distância percorrida). Também são discutidas as possíveis linhas de investigação de continuação ao trabalho

    The world is what you make it: an application of virtual reality to the tourism industry

    Get PDF
    The tourism industry is a highly information intensive-industiy. In few other areas of activity are the generation, gathering, processing, application and communication of information as important for dayto- day operations as they are for the tourism industry (Buhalis 1994). Traditional sources of tourism information, images, text, sound, animation and video, provide potential tourists with short and often rather limited glimpses of tourism destinations which may be inadequate to enable them to make informed decisions (Cheong 1995). In addition, these sources of tourist information provide only a passive experience as they often possess little involvement on the part of the potential tourist. Virtual Reality (VR), on the other hand, enables potential tourists to interact with and experience each tourist destination in high detail and provides them with enough information to make a well-informed tourist decision. When considering its application within the tourism industry, VR will offer the ability not only to view a destination, but also, to participate in the activities offered at the destination. Through VR the tourist advances from being a passive observer to being an active participant (Williams & Hobson 1994). This thesis addresses issues associated with the design and evaluation of a VR application to the tourism industry that provides users with all the traditional types of tourist information along with allowing them to experience a multi-participant, realistic, interactive and real-time walkthrough of real-life tourist destinations. In order to develop these walkthroughs, the basic concepts of VR had first to be analysed. This was achieved by gaining hands-on experience of the different types of VR hardware and software available in conjunction with an in-depth literature review. Following the completion of this analysis, an overview of the tourism industry was developed. This overview identified certain properties of the tourism product that lend themselves readily to the application of VR Once this was completed the final stage of the research was concerned with the development of the walkthroughs and the elicitation of knowledge from the development of these walkthroughs. There were many conclusions uncovered by this research but the most important was that VR can indeed be applied successfully to the tourism industry. The main areas of application will be in the areas of tourism policy and planning and the marketing of the tourism product. Another conclusion that was drawn from this research was that VR applications can help to generate realistic impressions and expectations of what can be experienced at a tourism location. The final outstanding conclusion drawn from this research was that potential tourists viewed the VR application as a decision making tool that increases their desire to actually visit a tourist location and not as a tourism substitute

    Freehand-Steering Locomotion Techniques for Immersive Virtual Environments: A Comparative Evaluation

    Get PDF
    Virtual reality has achieved significant popularity in recent years, and allowing users to move freely within an immersive virtual world has become an important factor critical to realize. The user’s interactions are generally designed to increase the perceived realism, but the locomotion techniques and how these affect the user’s task performance still represent an open issue, much discussed in the literature. In this article, we evaluate the efficiency and effectiveness of, and user preferences relating to, freehand locomotion techniques designed for an immersive virtual environment performed through hand gestures tracked by a sensor placed in the egocentric position and experienced through a head-mounted display. Three freehand locomotion techniques have been implemented and compared with each other, and with a baseline technique based on a controller, through qualitative and quantitative measures. An extensive user study conducted with 60 subjects shows that the proposed methods have a performance comparable to the use of the controller, further revealing the users’ preference for decoupling the locomotion in sub-tasks, even if this means renouncing precision and adapting the interaction to the possibilities of the tracker sensor
    corecore