5 research outputs found

    A New Myohaptic Instrument to Assess Wrist Motion Dynamically

    Get PDF
    The pathophysiological assessment of joint properties and voluntary motion in neurological patients remains a challenge. This is typically the case in cerebellar patients, who exhibit dysmetric movements due to the dysfunction of cerebellar circuitry. Several tools have been developed, but so far most of these tools have remained confined to laboratories, with a lack of standardization. We report on a new device which combines the use of electromyographic (EMG) sensors with haptic technology for the dynamic investigation of wrist properties. The instrument is composed of a drivetrain, a haptic controller and a signal acquisition unit. Angular accuracy is 0.00611 rad, nominal torque is 6 N·m, maximal rotation velocity is 34.907 rad/sec, with a range of motion of −1.0472 to +1.0472 rad. The inertia of the motor and handgrip is 0.004 kg·m2. This is the first standardized myohaptic instrument allowing the dynamic characterization of wrist properties, including under the condition of artificial damping. We show that cerebellar patients are unable to adapt EMG activities when faced with an increase in damping while performing fast reversal movements. The instrument allows the extraction of an electrophysiological signature of a cerebellar deficit

    Neurological Tremor: Sensors, Signal Processing and Emerging Applications

    Get PDF
    Neurological tremor is the most common movement disorder, affecting more than 4% of elderly people. Tremor is a non linear and non stationary phenomenon, which is increasingly recognized. The issue of selection of sensors is central in the characterization of tremor. This paper reviews the state-of-the-art instrumentation and methods of signal processing for tremor occurring in humans. We describe the advantages and disadvantages of the most commonly used sensors, as well as the emerging wearable sensors being developed to assess tremor instantaneously. We discuss the current limitations and the future applications such as the integration of tremor sensors in BCIs (brain-computer interfaces) and the need for sensor fusion approaches for wearable solutions

    Tremor in Parkinson's Disease: Loading and Trends in Tremor Characteristics

    Get PDF
    Parkinson's disease (PD) is a neuro-degenerative chronic disorder with cardinal signs of bradykinesia, resting tremor, rigidity, and postural abnormality/instability. Tremor, which is a manifestation of both normal and abnormal activities in the nervous system, can be described as an involuntary and periodic oscillation of any limb. Such an oscillation with a small amplitude, which is barely visible to the naked eye, is present in healthy people. This is called a physiological tremor and is asymptomatic. This tremor is believed to be the result of at least two distinct oscillations. A passive mechanical oscillation that is produced by the irregularities of motor unit firing, and by blood ejection during cardiac systole. The frequency and amplitude of these oscillations are dependent on the mechanical properties of the limb including joint stiffness and limb inertia. There is another component of oscillation that does not respond to elastic or inertial loading, which is called the central component, and is believed to arise from an unknown oscillating neuronal network within the central nervous system. Unlike physiological tremor, pathological tremors are symptomatic and can impair motor performance. Parkinson's disease (PD) tremor is generally manifested at rest, but also occurs during posture or motion. Classical PD rest tremor is known to be a central tremor of 4-6 Hz and peripheral origins have only a minimal role. However, whether or not the same central mechanism remains active during action tremor (including posture and movement) should yet be answered. Contrary to PD rest tremor, reported results on action tremor in the literature are diverse; and the reason for the changes in tremor characteristics in situations other than rest, or generally during muscle activation, is not fully understood. The lack of generality in the results of studies on action tremor, makes the efforts of treatment difficult, and is a barrier for mechanical/engineering approaches of suppressing this tremor. To investigate the role of mechanisms other than classic rest tremor, and possible sub-categories of tremulous PD in yielding diverse results, this study was conducted on twenty PD patients and fourteen healthy age-matched (on average) controls. To evaluate the possible contribution of (enhanced) physiological tremor, the study considered the effect of loading on postural hand tremor in a complete range of 0-100% MVC (Maximum Voluntary Contraction). The study looked at two measures of tremor amplitude and one measure of tremor frequency, and focused on two frequency bands of classic-rest (3.5-6.5 Hz) and physiological (7.5-16.5 Hz) tremors. The study revealed that PD tremor was not uniformly distributed in the three dimensional space, and then focused on the investigation of tremor in the dominant axis, which was the same as direction of loading. It also revealed that dopaminergic medication could significantly affect tremor components only in PD band, compared to the components in the physiological band. The study was an extension to previous studies and yielded similar results for the previously reported range of loading. However, with the extended range of loading, it revealed novel results particularly after separating PD patients into sub-groups. It was hypothesized that the coexistence of physiological mechanism, and considerable difference between sub-types of tremulous PD patients, are responsible for most of the diversity in the previously reported studies. This study showed that for clearer results the sub-groups are inevitable, and that automatic classification (clustering) provided the most separable sub-groups. These sub-groups had distinct trends of load effect on tremor amplitude and frequency. No matter which categorization method was used, at least one sub-group exhibited significantly higher tremor energy compared to the healthy participants not only in the PD band, but also in the physiological band. This meant that, for some sub-groups of PD, the physiological tremor is a very important mechanism and not the same as that of healthy people. The coexistence hypothesis was also affirmed by examining tremor spectrums' peak frequency and magnitude in the two separate bands. The necessity of the separation of tremulous PD patients into sub-groups, and the coexistence of physiological and classic PD tremor mechanisms for some of them are the factor that should be considered in the design of a suppressing device and also in the proposed treatment of action tremor in this population

    Effects of inertia and wrist oscillations on contralateral neurological postural tremor using the wristalyzer, a new myohaptic device

    No full text
    Upper limb postural tremor consists of mechanical-reflex and central-neurogenic oscillations, superimposed upon a background of irregular fluctuations in muscle force. Muscle spindles play key-roles in the information flow to supra-spinal and spinal generators. Oscillations were delivered using a new generation portable myohaptic device, called "wristalyzer," taking into account the ergonomy of upper limbs and allowing a fine adjustment to each configuration of upper limb segments. The nominal torque of the first generation device is 4 Nm, with a maximal rotation velocity of 300 degrees/s and a range of motion of ±45 degrees. Reliability was assessed in basal condition and during loading conditions. We assessed the effects of the addition of inertia on postural tremor of the finger in a group of 26 neurological patients and the effects of wrist oscillations upon contralateral postural tremor in 6 control subjects and in 7 neurological patients exhibiting a postural tremor. Patients showed two different behaviors in response to inertia and exhibited an increased variability of postural tremor during fast oscillations (13.3 Hz). One patient with overactivity of the olivocerebellar pathways exhibited a drop in the peak frequency of more than 20%. The relative power of the 8-12 Hz subband was significantly higher in controls both in basal condition and during oscillations (p = 0.028 and p = 0.015, respectively). The second generation wristalyzer allows to investigate the effects of mechanical oscillations up to frequency of 50 Hz. This mechatronic device can assess the responsiveness of tremor generators to stimulation of muscle spindles and biomechanical loading. Potential applications are the monitoring of dysmetria under various inertial or damping conditions, the assessment of rigidity in Parkinson's disease and the characterization of voluntary muscle force. © 2008 IEEE.SCOPUS: cp.jinfo:eu-repo/semantics/publishe
    corecore