4,838 research outputs found

    A Human-Cognitive Perspective of Users’ Password Choices in Recognition-Based Graphical Authentication

    Get PDF
    Graphical password composition is an important part of graphical user authentication which affects the strength of the chosen password. Considering that graphical authentication is associated with visual search, perception, and information retrieval, in this paper we report on an eye-tracking study (N = 109) that aimed to investigate the effects of users’ cognitive styles toward the strength of the created passwords and shed light into whether and how the visual strategy of the users during graphical password composition is associated with the passwords’ strength. For doing so, we adopted Witkin’s Field Dependence-Independence theory, which underpins individual differences in visual information and cognitive processing, as graphical password composition tasks are associated with visual search. The analysis revealed that users with different cognitive processing characteristics followed different patterns of visual behavior during password composition which affected the strength of the created passwords. The findings underpin the need of considering human-cognitive characteristics as a design factor in graphical password schemes. The paper concludes by discussing implications for improving recognition-based graphical passwords through adaptation and personalization techniques based on individual cognitive characteristics

    A comprehensive study of the usability of multiple graphical passwords

    Get PDF
    Recognition-based graphical authentication systems (RBGSs) using images as passwords have been proposed as one potential solution to the need for more usable authentication. The rapid increase in the technologies requiring user authentication has increased the number of passwords that users have to remember. But nearly all prior work with RBGSs has studied the usability of a single password. In this paper, we present the first published comparison of the usability of multiple graphical passwords with four different image types: Mikon, doodle, art and everyday objects (food, buildings, sports etc.). A longi-tudinal experiment was performed with 100 participants over a period of 8 weeks, to examine the usability performance of each of the image types. The re-sults of the study demonstrate that object images are most usable in the sense of being more memorable and less time-consuming to employ, Mikon images are close behind but doodle and art images are significantly inferior. The results of our study complement cognitive literature on the picture superiority effect, vis-ual search process and nameability of visually complex images

    Risks and potentials of graphical and gesture-based authentication for touchscreen mobile devices

    Get PDF
    While a few years ago, mobile phones were mainly used for making phone calls and texting short messages, the functionality of mobile devices has massively grown. We are surfing the web, sending emails and we are checking our bank accounts on the go. As a consequence, these internet-enabled devices store a lot of potentially sensitive data and require enhanced protection. We argue that authentication often represents the only countermeasure to protect mobile devices from unwanted access. Knowledge-based concepts (e.g., PIN) are the most used authentication schemes on mobile devices. They serve as the main protection barrier for many users and represent the fallback solution whenever alternative mechanisms fail (e.g., fingerprint recognition). This thesis focuses on the risks and potentials of gesture-based authentication concepts that particularly exploit the touch feature of mobile devices. The contribution of our work is threefold. Firstly, the problem space of mobile authentication is explored. Secondly, the design space is systematically evaluated utilizing interactive prototypes. Finally, we provide generalized insights into the impact of specific design factors and present recommendations for the design and the evaluation of graphical gesture-based authentication mechanisms. The problem space exploration is based on four research projects that reveal important real-world issues of gesture-based authentication on mobile devices. The first part focuses on authentication behavior in the wild and shows that the mobile context makes great demands on the usability of authentication concepts. The second part explores usability features of established concepts and indicates that gesture-based approaches have several benefits in the mobile context. The third part focuses on observability and presents a prediction model for the vulnerability of a given grid-based gesture. Finally, the fourth part investigates the predictability of user-selected gesture-based secrets. The design space exploration is based on a design-oriented research approach and presents several practical solutions to existing real-world problems. The novel authentication mechanisms are implemented into working prototypes and evaluated in the lab and the field. In the first part, we discuss smudge attacks and present alternative authentication concepts that are significantly more secure against such attacks. The second part focuses on observation attacks. We illustrate how relative touch gestures can support eyes-free authentication and how they can be utilized to make traditional PIN-entry secure against observation attacks. The third part addresses the problem of predictable gesture choice and presents two concepts which nudge users to select a more diverse set of gestures. Finally, the results of the basic research and the design-oriented applied research are combined to discuss the interconnection of design space and problem space. We contribute by outlining crucial requirements for mobile authentication mechanisms and present empirically proven objectives for future designs. In addition, we illustrate a systematic goal-oriented development process and provide recommendations for the evaluation of authentication on mobile devices.WĂ€hrend Mobiltelefone vor einigen Jahren noch fast ausschließlich zum Telefonieren und zum SMS schreiben genutzt wurden, sind die Anwendungsmöglichkeiten von MobilgerĂ€ten in den letzten Jahren erheblich gewachsen. Wir surfen unterwegs im Netz, senden E-Mails und ĂŒberprĂŒfen Bankkonten. In der Folge speichern moderne internetfĂ€higen MobilgerĂ€te eine Vielfalt potenziell sensibler Daten und erfordern einen erhöhten Schutz. In diesem Zusammenhang stellen Authentifizierungsmethoden hĂ€ufig die einzige Möglichkeit dar, um MobilgerĂ€te vor ungewolltem Zugriff zu schĂŒtzen. Wissensbasierte Konzepte (bspw. PIN) sind die meistgenutzten Authentifizierungssysteme auf MobilgerĂ€ten. Sie stellen fĂŒr viele Nutzer den einzigen Schutzmechanismus dar und dienen als Ersatzlösung, wenn alternative Systeme (bspw. Fingerabdruckerkennung) versagen. Diese Dissertation befasst sich mit den Risiken und Potenzialen gestenbasierter Konzepte, welche insbesondere die Touch-Funktion moderner MobilgerĂ€te ausschöpfen. Der wissenschaftliche Beitrag dieser Arbeit ist vielschichtig. Zum einen wird der Problemraum mobiler Authentifizierung erforscht. Zum anderen wird der Gestaltungsraum anhand interaktiver Prototypen systematisch evaluiert. Schließlich stellen wir generelle Einsichten bezĂŒglich des Einflusses bestimmter Gestaltungsaspekte dar und geben Empfehlungen fĂŒr die Gestaltung und Bewertung grafischer gestenbasierter Authentifizierungsmechanismen. Die Untersuchung des Problemraums basiert auf vier Forschungsprojekten, welche praktische Probleme gestenbasierter Authentifizierung offenbaren. Der erste Teil befasst sich mit dem Authentifizierungsverhalten im Alltag und zeigt, dass der mobile Kontext hohe AnsprĂŒche an die Benutzerfreundlichkeit eines Authentifizierungssystems stellt. Der zweite Teil beschĂ€ftigt sich mit der Benutzerfreundlichkeit etablierter Methoden und deutet darauf hin, dass gestenbasierte Konzepte vor allem im mobilen Bereich besondere VorzĂŒge bieten. Im dritten Teil untersuchen wir die Beobachtbarkeit gestenbasierter Eingabe und prĂ€sentieren ein Vorhersagemodell, welches die Angreifbarkeit einer gegebenen rasterbasierten Geste abschĂ€tzt. Schließlich beschĂ€ftigen wir uns mit der Erratbarkeit nutzerselektierter Gesten. Die Untersuchung des Gestaltungsraums basiert auf einem gestaltungsorientierten Forschungsansatz, welcher zu mehreren praxisgerechte Lösungen fĂŒhrt. Die neuartigen Authentifizierungskonzepte werden als interaktive Prototypen umgesetzt und in Labor- und Feldversuchen evaluiert. Im ersten Teil diskutieren wir Fettfingerattacken ("smudge attacks") und prĂ€sentieren alternative Authentifizierungskonzepte, welche effektiv vor diesen Angriffen schĂŒtzen. Der zweite Teil beschĂ€ftigt sich mit Angriffen durch Beobachtung und verdeutlicht wie relative Gesten dazu genutzt werden können, um blickfreie Authentifizierung zu gewĂ€hrleisten oder um PIN-Eingaben vor Beobachtung zu schĂŒtzen. Der dritte Teil beschĂ€ftigt sich mit dem Problem der vorhersehbaren Gestenwahl und prĂ€sentiert zwei Konzepte, welche Nutzer dazu bringen verschiedenartige Gesten zu wĂ€hlen. Die Ergebnisse der Grundlagenforschung und der gestaltungsorientierten angewandten Forschung werden schließlich verknĂŒpft, um die Verzahnung von Gestaltungsraum und Problemraum zu diskutieren. Wir prĂ€sentieren wichtige Anforderungen fĂŒr mobile Authentifizierungsmechanismen und erlĂ€utern empirisch nachgewiesene Zielvorgaben fĂŒr zukĂŒnftige Konzepte. ZusĂ€tzlich zeigen wir einen zielgerichteten Entwicklungsprozess auf, welcher bei der Entwicklung neuartiger Konzepte helfen wird und geben Empfehlungen fĂŒr die Evaluation mobiler Authentifizierungsmethoden

    Authentication Schemes\u27 Impact on Working Memory

    Get PDF
    Authentication is the process by which a computing system validates a user’s identity. Although this process is necessary for system security, users view authentication as a frequent disruption to their primary tasks. During this disruption, primary task information must be actively maintained in working memory. As a result, primary task information stored in working memory is at risk of being lost or corrupted while users authenticate. For over two decades, researchers have focused on developing more memorable passwords by replacing alphanumeric text with visual graphics (Biddle et al., 2012). However, very little attention has been given to the impact authentication has on working memory. A recent exploratory study suggests that working memory can be disrupted during graphical authentication (Still & Cain, 2019). In this study, we take the next step by controlling for task difficulty and contrasting performance with conventional password-based authentication. Baddeley’s model was employed to examine the impact of authentication on verbal, visuospatial, and central executive working memory (Baddeley & Hitch, 1974). Our findings may help designers select authentication systems that minimize adverse effects on users’ critical primary task performance. For instance, we revealed that conventional passwords do not have a greater negative impact on verbal primary task information compared to graphical passcodes. We also replicated findings reported by Still and Cain (2019), where visuospatial was least impaired by authentication. These findings are not intuitive, highlighting the need for further investigation of how authentication impacts primary task information in working memory

    Identifying the Strengths and Weaknesses of Over-the-Shoulder Attack Resistant Prototypical Graphical Authentication Schemes

    Get PDF
    Authentication verifies users’ identities to protect against costly attacks. Graphical authentication schemes utilize pictures as passcodes rather than strings of characters. Pictures have been found to be more memorable than the strings of characters used in alphanumeric passwords. However, graphical passcodes have been criticized for being susceptible to Over-the-Shoulder Attacks (OSA). To overcome this concern, many graphical schemes have been designed to be resistant to OSA. Security to this type of attack is accomplished by grouping targets among distractors, translating the selection of targets elsewhere, disguising targets, and using gaze-based input. Prototypical examples of graphical schemes that use these strategies to bolster security against OSAs were directly compared in within-subjects runoffs in studies 1 and 2. The first aim of this research was to discover the current usability limitations of graphical schemes. The data suggested that error rates are a common issue among graphical passcodes attempting to resist OSAs. Studies 3 and 4 investigated the memorability of graphical passcodes when users need to remember multiple passcodes or longer passcodes. Longer passcodes provide advantages to security by protecting against brute force attacks, and multiple passcodes need to be investigated as users need to authenticate for numerous accounts. It was found that participants have strong item retention for passcodes of up to eight images and for up to eight accounts. Also these studies leveraged context to facilitate memorability. Context slightly improved the memorability of graphical passcodes when participants needed to remember credentials for eight accounts. These studies take steps toward understanding the readiness of graphical schemes as an authentication option

    Security and usability of a personalized user authentication paradigm : insights from a longitudinal study with three healthcare organizations

    Get PDF
    Funding information: This research has been partially supported by the EU Horizon 2020 Grant 826278 "Securing Medical Data in Smart Patient-Centric Healthcare Systems" (Serums) , and the Research and Innovation Foundation (Project DiversePass: COMPLEMENTARY/0916/0182).This paper proposes a user-adaptable and personalized authentication paradigm for healthcare organizations, which anticipates to seamlessly reflect patients’ episodic and autobiographical memories to graphical and textual passwords aiming to improve the security strength of user-selected passwords and provide a positive user experience. We report on a longitudinal study that spanned over three years in which three public European healthcare organizations participated in order to design and evaluate the aforementioned paradigm. Three studies were conducted (n=169) with different stakeholders: i) a verification study aiming to identify existing authentication practices of the three healthcare organizations with diverse stakeholders (n=9); ii) a patient-centric feasibility study during which users interacted with the proposed authentication system (n=68); and iii) a human guessing attack study focusing on vulnerabilities among people sharing common experiences within location-aware images used for graphical passwords (n=92). Results revealed that the suggested paradigm scored high with regards to users’ likeability, perceived security, usability and trust, but more importantly it assists the creation of more secure passwords. On the downside, the suggested paradigm introduces password guessing vulnerabilities by individuals sharing common experiences with the end-users. Findings are expected to scaffold the design of more patient-centric knowledge-based authentication mechanisms within nowadays dynamic computation realms.PostprintPeer reviewe

    The Role of Eye Gaze in Security and Privacy Applications: Survey and Future HCI Research Directions

    Get PDF
    For the past 20 years, researchers have investigated the use of eye tracking in security applications. We present a holistic view on gaze-based security applications. In particular, we canvassed the literature and classify the utility of gaze in security applications into a) authentication, b) privacy protection, and c) gaze monitoring during security critical tasks. This allows us to chart several research directions, most importantly 1) conducting field studies of implicit and explicit gaze-based authentication due to recent advances in eye tracking, 2) research on gaze-based privacy protection and gaze monitoring in security critical tasks which are under-investigated yet very promising areas, and 3) understanding the privacy implications of pervasive eye tracking. We discuss the most promising opportunities and most pressing challenges of eye tracking for security that will shape research in gaze-based security applications for the next decade
    • 

    corecore