125 research outputs found

    In Sync: Exploring Synchronization to Increase Trust Between Humans and Non-humanoid Robots

    Full text link
    When we go for a walk with friends, we can observe an interesting effect: From step lengths to arm movements - our movements unconsciously align; they synchronize. Prior research found that this synchronization is a crucial aspect of human relations that strengthens social cohesion and trust. Generalizing from these findings in synchronization theory, we propose a dynamical approach that can be applied in the design of non-humanoid robots to increase trust. We contribute the results of a controlled experiment with 51 participants exploring our concept in a between-subjects design. For this, we built a prototype of a simple non-humanoid robot that can bend to follow human movements and vary the movement synchronization patterns. We found that synchronized movements lead to significantly higher ratings in an established questionnaire on trust between people and automation but did not influence the willingness to spend money in a trust game.Comment: To appear in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI 23), April 23-28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 14 page

    Neural foundations of cooperative social interactions

    Get PDF
    The embodied-embedded-enactive-extended (4E) approach to study cognition suggests that interaction with the world is a crucial component of our cognitive processes. Most of our time, we interact with other people. Therefore, studying cognition without interaction is incomplete. Until recently, social neuroscience has only focused on studying isolated human and animal brains, leaving interaction unexplored. To fill this gap, we studied interacting participants, focusing on both intra- and inter-brain (hyperscanning) neural activity. In the first study, we invited dyads to perform a visual task in both a cooperative and a competitive context while we measured EEG. We found that mid-frontal activity around 200-300 ms after receiving monetary rewards was sensitive to social context and differed between cooperative and competitive situations. In the second study, we asked participants to coordinate their movements with each other and with a robotic partner. We found significantly stronger EEG amplitudes at frontocentral electrodes when people interacted with a robotic partner. Lastly, we performed a comprehensive literature review and the first meta-analysis in the emerging field of hyperscanning that validated it as a method to study social interaction. Taken together, our results showed that adding a second participant (human or AI/robotic) fostered our understanding of human cognition. We learned that the activity at frontocentral electrodes is sensitive to social context and type of partner (human or robotic). In both studies, the participants’ interaction was required to show these novel neural processes involved in action monitoring. Similarly, studying inter-brain neural activity allows for the exploration of new aspects of cognition. Many cognitive functions involved in successful social interactions are accompanied by neural synchrony between brains, suggesting the extended form of our cognition

    Exploring the Learning Gains of Implementing Teacher Humanoid Robots in STEM Education: A Systematic Review

    Get PDF
    Εducational (or pedagogical) robotics has received increased attention over the last few years based on its effectiveness on the learning process. Humanoid robots have been recently introduced in school settings to mainly support teaching of curriculum-based subjects. However, humanoid robots’ benefits on STEM education in typical classroom settings are less examined by the research literature. Instead, most research studies take place in non-typical school or classroom settings (such as laboratories). The main goal of the current review is to sum up results of relevant research studies about the positive impact of teacher humanoid robots on STEM education. The learning benefits in STEM subjects, programming and reasoning skills are examined too. Sample subject of this review are mainstream students aged 4 to 18 years old and research studies are grouped based on their commonalities such as common learning areas and results

    Walking with virtual humans : understanding human response to virtual humanoids' appearance and behaviour while navigating in immersive VR

    Get PDF
    In this thesis, we present a set of studies whose results have allowed us to analyze how to improve the realism, navigation, and behaviour of the avatars in an immersive virtual reality environment. In our simulations, participants must perform a series of tasks and we have analyzed perceptual and behavioural data. The results of the studies have allowed us to deduce what improvements are needed to be incorporated to the original simulations, in order to enhance the perception of realism, the navigation technique, the rendering of the avatars, their behaviour or their animations. The most reliable technique for simulating avatars’ behaviour in a virtual reality environment should be based on the study of how humans behave within the environment. For this purpose, it is necessary to build virtual environments where participants can navigate safely and comfortably with a proper metaphor and, if the environment is populated with avatars, simulate their behaviour accurately. All these aspects together will make the participants behave in a way that is closer to how they would behave in the real world. Besides, the integration of these concepts could provide an ideal platform to develop different types of applications with and without collaborative virtual reality such as emergency simulations, teaching, architecture, or designing. In the first contribution of this thesis, we carried out an experiment to study human decision making during an evacuation. We were interested to evaluate to what extent the behaviour of a virtual crowd can affect individuals' decisions. From the second contribution, in which we studied the perception of realism with bots and humans performing just locomotion or varied animations, we can conclude that the combination of having human-like avatars with animation variety can increase the overall realism of a crowd simulation, trajectories and animation. The preliminary study presented in the third contribution of this thesis showed that realistic rendering of the environment and the avatars do not appear to increase the perception of realism in the participants, which is consistent with works presented previously. The preliminary results in our walk-in-place contribution showed a seamless and natural transition between walk-in-place and normal walk. Our system provided a velocity mapping function that closely resembles natural walk. We observed through a pilot study that the system successfully reduces motion sickness and enhances immersion. Finally, the results of the contribution related to locomotion in collaborative virtual reality showed that animation synchronism and footstep sound of the avatars representing the participants do not seem to have a strong impact in terms of presence and feeling of avatar control. However, in our experiment, incorporating natural animations and footstep sound resulted in smaller clearance values in VR than previous work in the literature. The main objective of this thesis was to improve different factors related to virtual reality experiences to make the participants feel more comfortable in the virtual environment. These factors include the behaviour and appearance of the virtual avatars and the navigation through the simulated space in the experience. By increasing the realism of the avatars and facilitating navigation, high scores in presence are achieved during the simulations. This provides an ideal framework for developing collaborative virtual reality applications or emergency simulations that require participants to feel as if they were in real life.En aquesta tesi, es presenta un conjunt d'estudis els resultats dels quals ens han permès analitzar com millorar el realisme, la navegació i el comportament dels avatars en un entorn de realitat virtual immersiu. En les nostres simulacions, els participants han de realitzar una sèrie de tasques i hem analitzat dades perceptives i de comportament mentre les feien. Els resultats dels estudis ens han permès deduir quines millores són necessàries per a ser incorporades a les simulacions originals, amb la finalitat de millorar la percepció del realisme, la tècnica de navegació, la representació dels avatars, el seu comportament o les seves animacions. La tècnica més fiable per simular el comportament dels avatars en un entorn de realitat virtual hauria de basar-se en l'estudi de com es comporten els humans dins de l¿entorn virtual. Per a aquest propòsit, és necessari construir entorns virtuals on els participants poden navegar amb seguretat i comoditat amb una metàfora adequada i, si l¿entorn està poblat amb avatars, simular el seu comportament amb precisió. Tots aquests aspectes junts fan que els participants es comportin d'una manera més pròxima a com es comportarien en el món real. A més, la integració d'aquests conceptes podria proporcionar una plataforma ideal per desenvolupar diferents tipus d'aplicacions amb i sense realitat virtual col·laborativa com simulacions d'emergència, ensenyament, arquitectura o disseny. En la primera contribució d'aquesta tesi, vam realitzar un experiment per estudiar la presa de decisions durant una evacuació. Estàvem interessats a avaluar en quina mesura el comportament d'una multitud virtual pot afectar les decisions dels participants. A partir de la segona contribució, en la qual estudiem la percepció del realisme amb robots i humans que realitzen només una animació de caminar o bé realitzen diverses animacions, vam arribar a la conclusió que la combinació de tenir avatars semblants als humans amb animacions variades pot augmentar la percepció del realisme general de la simulació de la multitud, les seves trajectòries i animacions. L'estudi preliminar presentat en la tercera contribució d'aquesta tesi va demostrar que la representació realista de l¿entorn i dels avatars no semblen augmentar la percepció del realisme en els participants, que és coherent amb treballs presentats anteriorment. Els resultats preliminars de la nostra contribució de walk-in-place van mostrar una transició suau i natural entre les metàfores de walk-in-place i caminar normal. El nostre sistema va proporcionar una funció de mapatge de velocitat que s'assembla molt al caminar natural. Hem observat a través d'un estudi pilot que el sistema redueix amb èxit el motion sickness i millora la immersió. Finalment, els resultats de la contribució relacionada amb locomoció en realitat virtual col·laborativa van mostrar que el sincronisme de l'animació i el so dels avatars que representen els participants no semblen tenir un fort impacte en termes de presència i sensació de control de l'avatar. No obstant això, en el nostre experiment, la incorporació d'animacions naturals i el so de passos va donar lloc a valors de clearance més petits en RV que treballs anteriors ja publicats. L'objectiu principal d'aquesta tesi ha estat millorar els diferents factors relacionats amb experiències de realitat virtual immersiva per fer que els participants se sentin més còmodes en l'entorn virtual. Aquests factors inclouen el comportament i l'aparença dels avatars i la navegació a través de l'entorn virtual. En augmentar el realisme dels avatars i facilitar la navegació, s'aconsegueixen altes puntuacions en presència durant les simulacions. Això proporciona un marc ideal per desenvolupar aplicacions col·laboratives de realitat virtual o simulacions d'emergència que requereixen que els participants se sentin com si estiguessin en la vida realPostprint (published version

    KEER2022

    Get PDF
    Avanttítol: KEER2022. DiversitiesDescripció del recurs: 25 juliol 202

    Utilizing the Proteus Effect to Improve Performance Using Avatars in Virtual Reality

    Get PDF
    Virtual reality allows users to experience a sense of ownership of a virtual body-a phenomenon commonly known as the body ownership illusion. Researchers and designers aim at inducing a body ownership illusion and creating embodied experiences using avatars-virtual characters that represent the user in the digital world. In accordance with the real world where humans own a body and interact via the body with the environment, avatars thereby enable users to interact with virtual worlds in a natural and intuitive fashion. Interestingly, previous work revealed that the appearance of an avatar can change the behavior, attitude, and perception of the embodying user. For example, research found that users who embodied attractive or tall avatars behaved more confidently in a virtual environment than those who embodied less attractive or smaller avatars. Alluding to the versatility of the Greek God Proteus who was said to be able to change his shape at will, this phenomenon was termed the Proteus effect. For designers and researchers of virtual reality applications, the Proteus effect is therefore an interesting and promising phenomenon to positively affect users during interaction in virtual environments. They can benefit from the limitless design space provided by virtual reality and create avatars with certain features that improve the users' interaction and performance in virtual environments. To utilize this phenomenon, it is crucial to understand how to design such avatars and their characteristics to create more effective virtual reality applications and enhanced experiences. Hence, this work explores the Proteus effect and the underlying mechanisms with the aim to learn about avatar embodiment and the design of effective avatars. This dissertation presents the results of five user studies focusing on the body ownership of avatars, and how certain characteristics can be harnessed to make users perform better in virtual environments than they would in casual embodiments. Hence, we explore methods for inducing a sensation of body ownership of avatars and learn about perceptual and physiological consequences for the real body. Furthermore, we investigate whether and how an avatar's realism and altered body structures affect the experience. This knowledge is then used to induce body ownership of avatars with features connected with high performance in physical and cognitive tasks. Hence, we aim at enhancing the users' performance in physically and cognitively demanding tasks in virtual reality. We found that muscular and athletic avatars can increase physical performance during exertion in virtual reality. We also found that an Einstein avatar can increase the cognitive performance of another user sharing the same virtual environment. This thesis concludes with design guidelines and implications for the utilization of the Proteus effect in the context of human-computer interaction and virtual reality

    Exploring the Use of Assistive Robotics in Play and Education for Children with Disabilities

    Get PDF
    Assistive technologies in general, and assistive robots in particular, are being studied extensively to maintain and increase the capabilities of individuals with disabilities. However, there are aspects in this field that have not been explored yet. This thesis investigates the use of assistive robots for different groups of children with disabilities, such as learning disabilities, and upper-limb disorders, where the use of robots as tools have not been widely explored. We began by exploring learning disabilities and their challenges. Students with a learning disability (LD) generally require supplementary one-to-one instruction and support to acquire the foundational academic skills learned at school. Because learning is more difficult for students with LD, students can frequently display off-task behaviours to avoid attempting or completing challenging learning tasks. Re-directing students back to their learning task is a frequent strategy used by educators to support students. However, there have been limited studies investigating the use of assistive technology to support student re-direction, specifically in a "real-world" educational setting. We investigated the impact of integrating a socially assistive robot to provide re-direction strategies to students. A commercially available social robot, QT, was employed within the existing learning program during one-to-one remedial instruction sessions. First, we conducted a pilot study to explore the impact of the robot on students' on-task behaviours and progress towards learning goals. The results of our mixed method analysis suggest that the robotic intervention supported students in staying on-task and completing their learning goal. Learning from the lessons of the pilot study, we designed a between-participant study with two conditions, control, and intervention with the QT robot to address the shortcomings of the pilot study. In the main study we aimed a) to evaluate the acceptance of the social robot by the users, i.e., instructors and students in a real-world educational setting; and b) understand the impact of the robot’s intervention on student's engagement during learning tasks over multiple learning sessions. Our qualitative analysis suggests that instructors and students showed positive attitudes towards the social robot in their one-to-one sessions. In addition, the students were more engaged with their task in the presence of the robot, and displayed fewer off-task behaviours in the intervention condition, compared to the control condition. These results suggest that a social robot can be used as an effective educational tool for instructors in boosting engagement and mitigating off-task behaviours for students with learning disabilities. Assistive technology can also be beneficial in play, especially for children that face barriers in physical activities due to their physical impairments. In the third study, we focused on children with upper-limb disorders and the lack of equipment and enjoyable experiences in games. While game-play is widely used in human robot interaction studies, using a robot as a play-mediator, where two individuals interact with each other through a robot, has not been fully studied yet. However, understanding the play dynamics of this type of game is an important step towards designing an engaging experience. In this work, participants played two collaborative games which involved teleoperating a mobile robot. Each game consisted in achieving the same task, but involved two different collaboration strategies: one where the players shared tasks and one where joint action was necessary. In this study, we focused on how both players collaborated with each other in terms of coordination and communication using video and joystick data. Due to Covid-19 restrictions, we were not able to recruit children with physical disabilities. Instead, we recruited university students to participate in the study to collect data. Results indicated different behavioural events, and observed different levels of communication among the two conditions. The present work contributes to robotic assistive technologies by providing support for children with learning disabilities and upper-limb disorders in different aspects of their life, such as education and play

    The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE)

    Get PDF
    • …
    corecore