3,135 research outputs found

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    Planning as Optimization: Dynamically Discovering Optimal Configurations for Runtime Situations

    Full text link
    The large number of possible configurations of modern software-based systems, combined with the large number of possible environmental situations of such systems, prohibits enumerating all adaptation options at design time and necessitates planning at run time to dynamically identify an appropriate configuration for a situation. While numerous planning techniques exist, they typically assume a detailed state-based model of the system and that the situations that warrant adaptations are known. Both of these assumptions can be violated in complex, real-world systems. As a result, adaptation planning must rely on simple models that capture what can be changed (input parameters) and observed in the system and environment (output and context parameters). We therefore propose planning as optimization: the use of optimization strategies to discover optimal system configurations at runtime for each distinct situation that is also dynamically identified at runtime. We apply our approach to CrowdNav, an open-source traffic routing system with the characteristics of a real-world system. We identify situations via clustering and conduct an empirical study that compares Bayesian optimization and two types of evolutionary optimization (NSGA-II and novelty search) in CrowdNav

    Early-Warning Monitoring Systems for Improved Drinking Water Resource Protection

    Get PDF

    Curses, Tradeoffs, and Scalable Management:Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations

    Get PDF
    Optimal management policies for water reservoir operation are generally designed via stochastic dynamic programming (SDP). Yet, the adoption of SDP in complex real-world problems is challenged by the three curses of dimensionality, modeling, and multiple objectives. These three curses considerably limit SDP’s practical application. Alternatively, this study focuses on the use of evolutionary multiobjective direct policy search (EMODPS), a simulation-based optimization approach that combines direct policy search, nonlinear approximating networks, and multiobjective evolutionary algorithms to design Pareto-approximate closed-loop operating policies for multipurpose water reservoirs. This analysis explores the technical and practical implications of using EMODPS through a careful diagnostic assessment of the effectiveness and reliability of the overall EMODPS solution design as well as of the resulting Pareto-approximate operating policies. The EMODPS approach is evaluated using the multipurpose Hoa Binh water reservoir in Vietnam, where water operators are seeking to balance the conflicting objectives of maximizing hydropower production and minimizing flood risks. A key choice in the EMODPS approach is the selection of alternative formulations for flexibly representing reservoir operating policies. This study distinguishes between the relative performance of two widely-used nonlinear approximating networks, namely artificial neural networks (ANNs) and radial basis functions (RBFs). The results show that RBF solutions are more effective than ANN ones in designing Pareto approximate policies for the Hoa Binh reservoir. Given the approximate nature of EMODPS, the diagnostic benchmarking uses SDP to evaluate the overall quality of the attained Pareto-approximate results. Although the Hoa Binh test case’s relative simplicity should maximize the potential value of SDP, the results demonstrate that EMODPS successfully dominates the solutions derived via SDP

    The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm

    Full text link
    [EN] The design of reinforced earth retaining walls is a combinatorial optimization problem of interest due to practical applications regarding the cost savings involved in the design and the optimization in the amount of CO2 emissions generated in its construction. On the other hand, this problem presents important challenges in computational complexity since it involves 32 design variables; therefore we have in the order of 10^20 possible combinations. In this article, we propose a hybrid algorithm in which the particle swarm optimization method is integrated that solves optimization problems in continuous spaces with the db-scan clustering technique, with the aim of addressing the combinatorial problem of the design of reinforced earth retaining walls. This algorithm optimizes two objective functions: the carbon emissions embedded and the economic cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization process, a random operator was designed. The best solutions, the averages, and the interquartile ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a hybrid version that uses k-means as the discretization method and with a discrete implementation of the harmony search algorithm. The results indicate that the db-scan operator significantly improves the quality of the solutions and that the proposed metaheuristic shows competitive results with respect to the harmony search algorithm.The first author was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056, the other two authors were supported by the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R).Garcia, J.; Martí Albiñana, JV.; Yepes, V. (2020). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics. 8(6):862-01-862-22. https://doi.org/10.3390/math8060862S862-01862-228
    • …
    corecore