31,867 research outputs found

    Implementation and assessment of demand response and voltage/var control with distributed generators

    Get PDF
    The main topic of this research is the efficient operation of a modernized distribution grid from both the customer side and utility side. For the customer side, this dissertation discusses the planning and operation of a customer with multiple demand response programs, energy storage systems and distributed generators; for the utility side, this dissertation addresses the implementation and assessment of voltage/VAR control and conservation voltage reduction in a distribution grid with distributed generators. The objectives of this research are as follows: (1) to develop methods to assist customers to select appropriate demand response programs considering the integration of energy storage systems and DGs, and perform corresponding energy management including dispatches of loads, energy storage systems, and DGs; (2) to develop stochastic voltage/VAR control techniques for distribution grids with renewable DGs; (3) to develop optimization and validation methods for the planning of integration of renewable DGs to assist the implementation of voltage/VAR control; and (4) to develop techniques to assess load-reduction effects of voltage/VAR control and conservation voltage reduction. In this dissertation, a two-stage co-optimization method for the planning and energy management of a customer with demand response programs is proposed. The first level is to optimally select suitable demand response programs to join and integrate batteries, and the second level is to schedule the dispatches of loads, batteries and fossil-fired backup generators. The proposed method considers various demand response programs, demand scenarios and customer types. It can provide guidance to a customer to make the most beneficial decisions in an electricity market with multiple demand response programs. For the implementation of voltage/VAR control, this dissertation proposes a stochastic rolling horizon optimization-based method to conduct optimal dispatches of voltage/VAR control devices such as on-load tap changers and capacitor banks. The uncertainties of renewable DG output are taken into account by the stochastic formulation and the generated scenarios. The exponential load models are applied to capture the load behaviors of various types of customers. A new method to simultaneously consider the integration of DGs and the implementation of voltage/VAR control is also developed. The proposed method includes both solution and validation stages. The planning problem is formulated as a bi-level stochastic program. The solution stage is based on sample average approximation (SAA), and the validation stage is based on multiple replication procedure (MRP) to test the robustness of the sample average approximation solutions of the stochastic program. This research applies big data-driven analytics and load modeling techniques to propose two novel methodologies to assess the load-reduction effects of conservation voltage reduction. The proposed methods can be used to assist utilities to select preferable feeders to implement conservation voltage reduction.Ph.D

    EV charging stations and RES-based DG: A centralized approach for smart integration in active distribution grids

    Get PDF
    Renewable Energy Sources based (RES-based) Dispersed Generation (DG) and Electrical Vehicles (EVs) charging systems diffusion is in progress in many Countries around the word. They have huge effects on the distribution grids planning and operation, particularly on MV and LV distribution grids. Many studies on their impact on the power systems are ongoing, proposing different approaches of managing. The present work deals with a real application case of integration of EVs charging stations with ES-based DG. The final task of the integration is to be able to assure the maximum utilization of the distribution grid to which both are connected, without any upgrading action, and in accordance with Distribution System Operators (DSOs) needs. The application of the proposed approach is related to an existent distribution system, owned by edistribuzione, the leading DSO in Italy. Diverse types of EVs supplying stations, with diverse diffusion scenarios, have been assumed for the case study; various Optimal Power Flow (OPF) models, based on diverse objective functions, reflecting DSO necessities, have been applied and tried. The obtained results demonstrate that a centralized management approach by the DSO, could assure the respect of operation limits of the system in the actual asset, delaying or avoiding upgrading engagements and charges

    Scenarios for the development of smart grids in the UK: synthesis report

    Get PDF
    ‘Smart grid’ is a catch-all term for the smart options that could transform the ways society produces, delivers and consumes energy, and potentially the way we conceive of these services. Delivering energy more intelligently will be fundamental to decarbonising the UK electricity system at least possible cost, while maintaining security and reliability of supply. Smarter energy delivery is expected to allow the integration of more low carbon technologies and to be much more cost effective than traditional methods, as well as contributing to economic growth by opening up new business and innovation opportunities. Innovating new options for energy system management could lead to cost savings of up to £10bn, even if low carbon technologies do not emerge. This saving will be much higher if UK renewable energy targets are achieved. Building on extensive expert feedback and input, this report describes four smart grid scenarios which consider how the UK’s electricity system might develop to 2050. The scenarios outline how political decisions, as well as those made in regulation, finance, technology, consumer and social behaviour, market design or response, might affect the decisions of other actors and limit or allow the availability of future options. The project aims to explore the degree of uncertainty around the current direction of the electricity system and the complex interactions of a whole host of factors that may lead to any one of a wide range of outcomes. Our addition to this discussion will help decision makers to understand the implications of possible actions and better plan for the future, whilst recognising that it may take any one of a number of forms

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Smart Regulation for Smart Grids

    Get PDF
    Climate change and security of supply policies are driving us towards a decarbonization of the electricity system. It is in this context that smart grids are being discussed. Electricity grids, and hence their regulatory frameworks, have a key role to play in facilitating this transformation of the electricity system. In this paper, we analyze what is expected from grids and what are the regulatory tools that could be used to align the incentives of grid companies and grid users with what is expected from them. We look at three empirical cases to see which regulatory tools have already been applied and find that smart grids need a coherent regulatory framework addressing grid services, grid technology innovation and grid user participation to the ongoing grid innovation. The paper concludes with what appears to be a smart regulation for smart grids.Regulation, innovation, electricity, grids, transmission, distribution

    Decentralized energy supply and electricity market structures

    Get PDF
    Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate consideration, the overall costs of the electricity generation system will be unnecessarily high. The present paper analyses, based on detailed modelling of decentralized demand and supply as well as of the overall system, the marginal costs or savings resulting from decentralized production. Thereby particular focus is laid on taking adequately into account the stochasticity both of energy demand and energy supply. An efficient grid pricing system should then remunerate long-term grid cost savings to operators of decentralized energy production or/and charge long-term additional grid costs to these operators. With detailed models of decentralized demand and supply as well as the overall system, the marginal costs or savings resulting from decentralized production are determined and their dependency on characteristics of the grid and of the decentralized supply are discussed.electricity markets, decentralized power production, demand side management

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15
    corecore