783 research outputs found

    Coupling radio propagation and weather forecast models to maximize Ka-band channel transmission rate for interplanetary missions

    Get PDF
    Deep space (DS) missions for interplanetary explorations are aimed at acquiring information about the solar system and its composition. To achieve this result a radio link is established between the space satellite and receiving stations on the Earth. Significant channel capacity must be guaranteed to such spacecraft-to-Earth link considering their large separation distance as well. Terrestrial atmospheric impairments on the space-to-Earth propagating signals are the major responsible for the signal degradation thus reducing the link’s channel temporal availability. Considering the saturation and the limited bandwidth of the conventional systems used working at X-band (around 8.4 GHz), frequencies above Ku-band (12-18 GHz) are being used and currently explored for next future DS missions. For example, the ESA mission EUCLID, planned to be launched in 2020 to reach Sun-Earth Lagrange point L2, will use the K-band (at 25.5-27 GHz). The BepiColombo (BC) ESA mission to Mercury, planned to be launched in 2016, will use Ka-band (at 32-34 GHz) with some modules operating at X-band too. The W-band is also being investigated for space communications (Lucente et al., IEEE Systems J., 2008) as well as near-infrared band for DS links (Luini at al., 3rd IWOW, 2014; Cesarone et al., ICSOS, 2011). If compared with X-band channels, K-band and Ka-band can provide an appealing data rate and signal-to-noise ratio in free space due to the squared-frequency law increase of antenna directivity within the downlink budget (for the same physical antenna size). However, atmospheric path attenuation can be significant for higher frequencies since the major source of transmission outage is not only caused by convective rainfall, as it happens for lower frequencies too, but even non-precipitating clouds and moderate precipitation produced by stratiform rain events are detrimental. This means that accurate channel models are necessary for DS mission data link design at K and Ka band. A physical approach can offer advanced radiopropagation models to take into account the effects due to atmospheric gases, clouds and precipitation. The objective of this work is to couple a weather forecast numerical model with a microphysically- oriented radiopropagation model, providing a description of the atmospheric state and of its effects on a DS downlink. This work is developed in the framework of the RadioMeteorological Operations Planner (RMOP) program, aimed at performing a feasibility study for the BC mission (Biscarini et al., EuCAP 2014). The RMOP chain for the link budget computation is composed by three modules: weather forecast (WFM), radio propagation (RPM) and downlink budget (DBM). WFM is aimed at providing an atmospheric state vector. Among the available weather forecast models, for RMOP purposes we have used the Mesoscale Model 5. The output of the WFM is the input of the RPM for the computation of the atmospheric attenuation and sky-noise temperature at the receiving ground station antenna. RPM makes use of radiative transfer solver based on the Eddington approximations well as accurate scattering models. Time series of attenuation and sky-noise temperature coming from the RPM are converted into probability density functions and then ingested by the DBM to compute the received data volume (DV). Using the BC mission as a reference test case for the Ka-band ground station at Cebreros (Spain), this work will show the advantages of using a coupled WFM-RPM approach with respect to climatological statistics in a link budget optimization procedure. The signal degradation due to atmospheric effects in DS links in terms of received DV will be also investigated not only at Ka band, but also at X, K and W for intercomparison. The quality of the DS downlink will be given in terms of received DV and the results at different frequencies compared showing the respective advantages and drawbacks

    Study of Rain Attenuation Calculation and Strategic Power Control for Ka-Band Satellite Communication in India

    Get PDF
    The tremendous worldwide growth in the use of Internet and multimedia services prompted the ambitious planning for evolution of commercial and broadband satellite communication systems. The traditional C and Ku bands in satellite communications are getting crowded, So the systems are moving towards higher frequency ranges above 20 GHz. The Ka-band (18-40 GHz) frequency spectrum has gained attention for satellite communication. The inherent drawback of Ka-band satellite system is that increase in signal distortion resulting from propagation effects. Atmospheric attenuation in Ka-band is always severe, especially in the presence of rain. Thus, New technologies are required for Ka-band systems, such as multiple hopping antenna beams and regenerative transponders to support aggregate data rates in the range of 1 - 20 Gbps per satellite, which can provide DTH, HDTV, mobile and fixed Internet users with broadband connection. Currently in India C and Ku-band frequencies are being used for commercial satellite communications. In future Ka-band will be used for wideband applications. Keeping in view of the socio-economic and geographical diversities of India. Propagation studies are essential for estimation of attenuation, so that Ka-band satellite links operating in different parts of Indian region can be registered appropriately. Ka-band system is recognized as a new generation in communication satellites that encompasses a number of innovative technologies such as on board processing (OBP) for multimedia applications and switching to provide two way services to and from small ground terminals. To do this efficiently multiple pencil like spot beams are used. One distinct feature of this propagation being used to address this problem is Satellite Spot-Beam. To design effective satellite communication system, the arrangement of spot beam locations in Indian subcontinent, the study and analysis of link availability for Kaband satellite communication in various geographically separated spot beams in India using statistical data is necessary. Based on global rain models integrated with the link budget, the study allows us to examine major system design issues encountered in Ka-band satellite communication that are susceptible to propagation impairments. This system can be flexible enough to increase power on specific transmissions to compensate for local weather conditions. This can make better use of the available bandwidth than C or Ku-band satellite, and more users can get higher level of services

    Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    Get PDF
    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology

    Next Generation High Throughput Satellite System

    Get PDF
    This paper aims at presenting an overview of the state-of-the-art in High Throughput Satellite (HTS) systems for Fixed Satellite Services (FSS) and High Density-FSS. Promising techniques and innovative strategies that can enhance system performance are reviewed and analyzed aiming to show what to expect for next generation ultra-high capacity satellite systems. Potential air interface evolutions, efficient frequency plans,feeder link dimensioning strategies and interference cancellation techniques are presented to show how Terabit/s satellite myth may turn into reality real soon

    Investigation of HAPs Propagation Channel for Wireless Access in a Tropical Region at Ka-Band

    Get PDF
    In the last few years, High Altitude Platforms (HAPs) have attracted considerable effort due to their ability to exploit the advantages of satellite and terrestrial-based systems. Rain attenuation is the most dominant atmospheric impairment, especially at such frequency band. This paper addresses the modelling of rain attenuation and describes a propagation channel model for HAPs at Ka-band to provide efficient and robust wireless access for tropical regions. The attenuation due to rain is modeled based on three years measured data for Johor Bahru to estimate the actual effect of rain on signals at Ka band. The radio propagation channel is usually characterized as a random multipath channel. Specifically, a statistical derivation of probability distribution function for Rayleigh and Rician fading channels are presented. The model consists of multiple path scattering effects, time dispersion, and Doppler shifts acting on the HAPs communication link. Simulation results represent the fading signal level variations. Results show perfect agreement between simulation and theoretical, thereby conforming to the multipath structures. The information obtained will be useful to system engineers for HAPs link budget analysis in order to obtain the required fade margin for optimal system performance in tropical regions

    Propagation Effects Handbook for Satellite Systems Design

    Get PDF
    This paper describes the latest edition of the NASA Propagation Effects Handbook for Satellite Systems Design and presents a summary of application of the handbook information to satellite link design and performance. NASA, which has supported a large part of the experimental work in radiowave propagation on space communications links, recognized the need for a reference handbook of this type, and initiated a program in the late 1970\u27s to develop and update a document that will meet this need. The Fifth Edition provides, in a single document, an update to two previous NASA handbooks; the fourth edition of a handbook which focused on propagation effects from 10 to 100 GHz (Ippolito, 1989), and the second edition of a companion handbook which covered propagation effects on satellite systems at frequencies below 10 GHz (Flock, 1987). This Fifth Edition covers the full range of radiowave frequencies that are in use or allocated for space communications and services, from nominally 100 MHz up to 100 GHz
    corecore