198,836 research outputs found

    Development of low frequencies, insulating thick diaphragms for power MEMS applications

    Full text link
    Major challenges of micro thermal machines are the thermal insulation and mechanical tolerance in the case of sliding piston. Switching from piston to membrane in microengines can alleviate the latest and lead to planar architectures. However, the thermal isolation would call for very thick structures which are associated to too high resonant frequencies which are detrimental to the engine performances. A thermal and mechanical compromise is to be made. On the contrary, based on fluid structure interaction, using an incompressible fluid contained in a cavity sealed by deformable diaphragm it would be possible to design a thick, low frequency insulating diaphragm. The design involves a simple planar geometry that is easy to manufacture with standard microelectronics methods. An analytical fluid structure model is proposed and theoretically validated. Experimental structures are realized and tested. The model is in agreement with the experimental results. A dimensionless model is proposed to design hybrid fluid structures for micromachines

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy
    • …
    corecore