1,412 research outputs found

    Advanced microwave sounding unit study for atmospheric infrared sounder

    Get PDF
    The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), and the Microwave Humidity Sounder (MHS, formerly AMSU-B) together constitute the advanced sounding system facility for the Earth Observing System (EOS). A summary of the EOS phase B activities are presented

    The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-band

    Get PDF
    Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration for radiometers on future missions in space such as NASA's Aquarius mission and ESA's SMOS mission. Two prominent strategies for compensating for Faraday rotation are using a sum of the signal at two polarizations and using the correlation between the signals at the two polarizations. These strategies work for an idealized antenna. This paper evaluates the strategies in the context of realistic antennas such as will be built for the Aquarius radiometer. Realistic antennas will make small differences that need to be included in planning for retrieval algorithms in future missions

    Polarimetric formulation of the visibility function equation including cross-polar antenna patterns

    Get PDF
    The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission will be the first one using two-dimensional aperture synthesis radiometry for earth observation. This study presents the formulation that relates instrument observables and brightness temperature maps including cross-polar antenna voltage patterns, which may be also different from element to element. Finally, the radiometric accuracy degradation if cross-polar patterns are neglected in the image reconstruction is studied.Postprint (published version

    Polarimetric Formulation Of The Visibility Function Equation Including Cross-Polar Antenna Patterns

    Get PDF
    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission will be the first one using two-dimensional aperture synthesis radiometry for Earth observation. This study presents the formulation that relates instrument observables and brightness temperature maps including cross-polar antenna voltage patterns, which may be also different from element to element. Finally, the radiometric accuracy degradation if cross-polar patterns are neglected in the image reconstruction is studied.Peer Reviewe

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Activities within the period from January 1, 1992 through June 30, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the integration and initial data flights of the MIR on board the NASA ER-2. Georgia Tech contributions during this period include completion of the MIR flight software and implementation of a 'quick-view' graphics program for ground based calibration and analysis of the MIR imagery. In the current configuration, the MIR has channels at 90, 150, 183 +/- 1,3,7, and 220 GHz. Provisions for three additional channels at 325 +/-1,3 and 9 GHZ have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. The combination of the millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide the necessary aircraft radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been accepted for publication (Gasiewski, 1992), and is included as Appendix A. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. Other Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design

    Development of UHF radiometer

    Get PDF
    A wideband multifrequency UHF radiometer was initially developed to operate in the 500 to 710 MHz frequency range for the remote measurement of ocean water salinity. However, radio-frequency interference required a reconfiguration to operate in the single-frequency radio astronomy band of 608 to 614 MHz. Details of the radiometer development and testing are described. Flight testing over variable terrain provided a performance comparison of the UHF radiometer with an L-band radiometer for remote sensing of geophysical parameters. Although theoretically more sensitive, the UHF radiometer was found to be less desirable in practice than the L-band radiometer

    RETRIEVAL OF ICE CLOUD PARAMETERS USING DMSP SPECIAL SENSOR MICROWAVE IMAGER/SOUNDER

    Get PDF
    Clouds exert a profound influence on both the water balance of the atmosphere and the earth's radiation budget (Stephens 2005; Stephens and Kummerow 2007). Among the global distribution, 30% of them are ice clouds (Riedi et al. 2000). It is important to improve our knowledge of the ice cloud properties in order to determine their influence to the global ecosystem. For ice clouds with millimeter-size ice particles, which are generally found in anvil cirrus and deep convections, microwave and millimeter wave length satellite measurements are suitable for the ice cloud microphysical property retrieval because of its strong ability to penetrate deeper into dense ice clouds. For these types of ice clouds, brightness temperatures at the top of the atmosphere are analytically derived as a function of vertically integrated ice water content (i.e. ice water path), effective particle diameter, and bulk volume density. In general, three brightness temperature measurements are needed to retrieve the three ice cloud microphysical parameters. A two-stream radiative transfer theory was applied to data from the Advanced Microwave Sounding Unit (AMSU) and the Moisture Humidity Sensor (MHS) in order to generate global ice water paths operationally. This research further applied the model and theory to derive ice water path (IWP) from the Special Sensor Microwave Imager/Sounder (SSMIS) onboard the Defense Meteorological Satellite Program (DMSP) F-16 satellite. Compared to AMSU/MHS, which have field of views (FOV) varying with scan position, SSMIS scans the Earth's atmosphere at a constant viewing angle of 53o and therefore offers a uniform FOV within each scan. This unique feature allows for improved global mapping and monitoring of ice clouds so that a more accurate and realistic IWP and ice particle effective diameter distribution is expected. A direct application of SSMIS-derived ice water path is its relationship with surface rain rate as derived previously for AMSU and MHS instruments. Here, SSMIS-derived rain rate was compared to the AMSU and MHS rainfall products and hourly synthetic precipitation observations from rain gauges and surface radar. Results show that SSMIS surface precipitation distribution is spatially consistent and does not have apparent artificial boundary near coastal zones as previously seen in other algorithms. Also, the ice water path associated with a severe storm reasonably delineates the strong convective precipitation areas and has a spatial variation consistent with surface precipitation. From retrieved instantaneous surface precipitation, a tropical and subtropical oceanic precipitation anomaly time series is constructed from 5 year's worth (2005-2009) of SSMIS data. This data record is also linked to the previous constructed SSM/I 15-year (1992-2006) data record to provide a longer term climate study by satellite observations. In future studies, refined algorithms for the estimate of ice cloud base temperature and ice particle bulk volume density are going to be developed to improve the accuracy of IWP retrieval under various cloud vertical distributions. Meanwhile, a better inter-sensor cross calibration scheme is the key to make satellite measurements more useful in climate change study

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica.Postprint (published version
    • …
    corecore