182 research outputs found

    Finite Random Matrix Theory Analysis of Multiple Antenna Communication Systems

    Get PDF
    Multiple-antenna systems are capable of providing substantial improvement to wireless communication networks, in terms of data rate and reliability. Without utilizing extra spectrum or power resources, multiple-antenna technology has already been supported in several wireless communication standards, such as LTE, WiFi and WiMax. The surging popularity and enormous prospect of multiple-antenna technology require a better understanding to its fundamental performance over practical environments. Motivated by this, this thesis provides analytical characterizations of several seminal performance measures in advanced multiple-antenna systems. The analytical derivations are mainly based on finite dimension random matrix theory and a collection of novel random matrix theory results are derived. The closed-form probability density function of the output of multiple-input multiple-output (MIMO) block-fading channels is studied. In contrast to the existing results, the proposed expressions are very general, applying for arbitrary number of antennas, arbitrary signal-to-noise ratio and multiple classical fading models. Results are presented assuming two input structures in the system: the independent identical distributed (i.i.d.) Gaussian input and a product form input. When the channel is fed by the i.i.d. Gaussian input, analysis is focused on the channel matrices whose Gramian is unitarily invariant. When the channel is fed by a product form input, analysis is conducted with respect to two capacity-achieving input structures that are dependent upon the relationship between the coherence length and the number of antennas. The mutual information of the systems can be computed numerically from the pdf expression of the output. The computation is relatively easy to handle, avoiding the need of the straight Monte-Carlo computation which is not feasible in large-dimensional networks. The analytical characterization of the output pdf of a single-user MIMO block-fading channels with imperfect channel state information at the receiver is provided. The analysis is carried out under the assumption of a product structure for the input. The model can be thought of as a perturbation of the case where the statistics of the channel are perfectly known. Specifically, the average singular values of the channel are given, while the channel singular vectors are assumed to be isotropically distributed on the unitary groups of dimensions given by the number of transmit and receive antennas. The channel estimate is affected by a Gaussian distributed error, which is modeled as a matrix with i.i.d. Gaussian entries of known covariance. The ergodic capacity of an amplify-and-forward (AF) MIMO relay network over asymmetric channels is investigated. In particular, the source-relay and relay-destination channels undergo Rayleigh and Rician fading, respectively. Considering arbitrary-rank means for the relay-destination channel, the marginal distribution of an unordered eigenvalue of the cascaded AF channel is presented, thus the analytical expression of the ergodic capacity of the system is obtained. The results indicate the impact of the signal-to-noise ratio and of the Line-of-Sight component on such asymmetric relay network

    Capacity and performance analysis of advanced multiple antenna communication systems

    Get PDF
    Multiple-input multiple-output (MIMO) antenna systems have been shown to be able to substantially increase date rate and improve reliability without extra spectrum and power resources. The increasing popularity and enormous prospect of MIMO technology calls for a better understanding of the performance of MIMO systems operating over practical environments. Motivated by this, this thesis provides an analytical characterization of the capacity and performance of advanced MIMO antenna systems. First, the ergodic capacity of MIMO Nakagami-m fading channels is investigated. A unified way of deriving ergodic capacity bounds is developed under the majorization theory framework. The key idea is to study the ergodic capacity through the distribution of the diagonal elements of the quadratic channel HHy which is relatively easy to handle, avoiding the need of the eigenvalue distribution of the channel matrix which is extremely difficult to obtain. The proposed method is first applied on the conventional point-to-point MIMO systems under Nakagami-m fading, and later extended to the more general distributed MIMO systems. Second, the ergodic capacity of MIMO multi-keyhole and MIMO amplify-and-forward (AF) dual-hop systems is studied. A set of new statistical properties involving product of random complex Gaussian matrix, i.e., probability density function (p.d.f.) of an unordered eigenvalue, p.d.f. of the maximum eigenvalue, expected determinant and log-determinant, is derived. Based on these, analytical closedform expressions for the ergodic capacity of the systems are obtained and the connection between the product channels and conventional point-to-point MIMO channels is also revealed. Finally, the effect of co-channel interference is investigated. First, the performance of optimum combining (OC) systems operating in Rayleigh-product channels is analyzed based on novel closed-form expression of the cumulative distribution function (c.d.f.) of the maximum eigenvalue of the resultant channel matrix. Then, for MIMO Rician channels and MIMO Rayleigh-product channels, the ergodic capacity at low signal-to-noise ratio (SNR) regime is studied, and the impact of various system parameters, such as transmit and receive antenna number, Rician factor, channel mean matrix and interference-tonoise- ratio, is examined

    Performance Analysis of a Dual-Hop Cooperative Relay Network with Co-Channel Interference

    Get PDF
    This paper analyzes the performance of a dual-hop amplify-and-forward (AF) cooperative relay network in the presence of direct link between the source and destination and multiple co-channel interferences (CCIs) at the relay. Specifically, we derive the new analytical expressions for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR) and the average symbol error rate (ASER) of the relay network. Computer simulations are given to confirm the validity of the analytical results and show the effects of direct link and interference on the considered AF relay network

    Performance Analysis of a Two-Hop MIMO Mobile-to-Mobile via Stratospheric-Relay Link Employing Hierarchical Modulation

    Get PDF
    Next generation wireless communication networks intend to take advantage of the integration of terrestrial and aerospace infrastructures. Besides, multiple-input multiple-output (MIMO) architecture is the key technology, which has brought the wireless gigabit vision closer to reality. In this direction, high-altitude platforms (HAPs) could act as relay stations in the stratosphere transferring information from an uplink to a downlink MIMO channel. This paper investigates the performance of a novel transmission scheme for the delivery of mobile-to-mobile (M-to-M) services via a stratospheric relay. It is assumed that the source, relay, and destination nodes are equipped with multiple antennas and that amplify-and-forward (AF) relaying is adopted. The performance is analyzed through rigorous simulations in terms of the bit-error rate (BER) by using a recently proposed 3D geometry-based reference model in spatially correlated flat-fading MIMO channels, employing a hierarchical broadcast technique and minimum mean square error (MMSE) receivers

    Analysis and Ad-hoc Networking Solutions for Cooperative Relaying Systems

    Get PDF
    Users of mobile networks are increasingly demanding higher data rates from their service providers. To cater to this demand, various signal processing and networking algorithms have been proposed. Amongst them the multiple input multiple output (MIMO) scheme of wireless communications is one of the most promising options. However, due to certain physical restrictions, e.g., size, it is not possible for many devices to have multiple antennas on them. Also, most of the devices currently in use are single-antenna devices. Such devices can make use of the MIMO scheme by employing cooperative MIMO methods. This involves nearby nodes utilizing the antennas of each other to form virtual antenna arrays (VAAs). Nodes with limited communication ranges can further employ multi-hopping to be able to communicate with far away nodes. However, an ad-hoc communications scheme with cooperative MIMO multi-hopping can be challenging to implement because of its de-centralized nature and lack of a centralized controling entity such as a base-station. This thesis looks at methods to alleviate the problems faced by such networks.In the first part of this thesis, we look, analytically, at the relaying scheme under consideration and derive closed form expressions for certain performance measures (signal to noise ratio (SNR), symbol error rate (SER), bit error rate (BER), and capacity) for the co-located and cooperative multiple antenna schemes in different relaying configurations (amplify-and-forward and decode-and-forward) and different antenna configurations (single input single output (SISO), single input multiple output (SIMO) and MIMO). These expressions show the importance of reducing the number of hops in multi-hop communications to achieve a better performance. We can also see the impact of different antenna configurations and different transmit powers on the number of hops through these simplified expressions.We also look at the impact of synchronization errors on the cooperative MIMO communications scheme and derive a lower bound of the SINR and an expression for the BER in the high SNR regime. These expressions can help the network designers to ensure that the quality of service (QoS) is satisfied even in the worst-case scenarios. In the second part of the thesis we present some algorithms developed by us to help the set-up and functioning of cluster-based ad-hoc networks that employ cooperative relaying. We present a clustering algorithm that takes into account the battery status of nodes in order to ensure a longer network life-time. We also present a routing mechanism that is tailored for use in cooperative MIMO multi-hop relaying. The benefits of both schemes are shown through simulations.A method to handle data in ad-hoc networks using distributed hash tables (DHTs) is also presented. Moreover, we also present a physical layer security mechanism for multi-hop relaying. We also analyze the physical layer security mechanism for the cooperative MIMO scheme. This analysis shows that the cooperative MIMO scheme is more beneficial than co-located MIMO in terms of the information theoretic limits of the physical layer security.Nutzer mobiler Netzwerke fordern zunehmend höhere Datenraten von ihren Dienstleistern. Um diesem Bedarf gerecht zu werden, wurden verschiedene Signalverarbeitungsalgorithmen entwickelt. Dabei ist das "Multiple input multiple output" (MIMO)-Verfahren für die drahtlose Kommunikation eine der vielversprechendsten Techniken. Jedoch ist aufgrund bestimmter physikalischer Beschränkungen, wie zum Beispiel die Baugröße, die Verwendung von mehreren Antennen für viele Endgeräte nicht möglich. Dennoch können solche Ein-Antennen-Geräte durch den Einsatz kooperativer MIMO-Verfahren von den Vorteilen des MIMO-Prinzips profitieren. Dabei schließen sich naheliegende Knoten zusammen um ein sogenanntes virtuelles Antennen-Array zu bilden. Weiterhin können Knoten mit beschränktem Kommunikationsbereich durch mehrere Hops mit weiter entfernten Knoten kommunizieren. Allerdings stellt der Aufbau eines solchen Ad-hoc-Netzwerks mit kooperativen MIMO-Fähigkeiten aufgrund der dezentralen Natur und das Fehlen einer zentral-steuernden Einheit, wie einer Basisstation, eine große Herausforderung dar. Diese Arbeit befasst sich mit den Problemstellungen dieser Netzwerke und bietet verschiedene Lösungsansätze.Im ersten Teil dieser Arbeit werden analytisch in sich geschlossene Ausdrücke für ein kooperatives Relaying-System bezüglicher verschiedener Metriken, wie das Signal-Rausch-Verhältnis, die Symbolfehlerrate, die Bitfehlerrate und die Kapazität, hergeleitet. Dabei werden die "Amplify-and forward" und "Decode-and-forward" Relaying-Protokolle, sowie unterschiedliche Mehrantennen-Konfigurationen, wie "Single input single output" (SISO), "Single input multiple output" (SIMO) und MIMO betrachtet. Diese Ausdrücke zeigen die Bedeutung der Reduzierung der Hop-Anzahl in Mehr-Hop-Systemen, um eine höhere Leistung zu erzielen. Zudem werden die Auswirkungen verschiedener Antennen-Konfigurationen und Sendeleistungen auf die Anzahl der Hops analysiert.  Weiterhin wird der Einfluss von Synchronisationsfehlern auf das kooperative MIMO-Verfahren herausgestellt und daraus eine untere Grenze für das Signal-zu-Interferenz-und-Rausch-Verhältnis, sowie ein Ausdruck für die Bitfehlerrate bei hohem Signal-Rausch-Verhältnis entwickelt. Diese Zusammenhänge sollen Netzwerk-Designern helfen die Qualität des Services auch in den Worst-Case-Szenarien sicherzustellen. Im zweiten Teil der Arbeit werden einige innovative Algorithmen vorgestellt, die die Einrichtung und die Funktionsweise von Cluster-basierten Ad-hoc-Netzwerken, die kooperative Relays verwenden, erleichtern und verbessern. Darunter befinden sich ein Clustering-Algorithmus, der den Batteriestatus der Knoten berücksichtigt, um eine längere Lebensdauer des Netzwerks zu gewährleisten und ein Routing-Mechanismus, der auf den Einsatz in kooperativen MIMO Mehr-Hop-Systemen zugeschnitten ist. Die Vorteile beider Algorithmen werden durch Simulationen veranschaulicht. Eine Methode, die Daten in Ad-hoc-Netzwerken mit verteilten Hash-Tabellen behandelt wird ebenfalls vorgestellt. Darüber hinaus wird auch ein Sicherheitsmechanismus für die physikalische Schicht in Multi-Hop-Systemen und kooperativen MIMO-Systemen präsentiert. Eine Analyse zeigt, dass das kooperative MIMO-Verfahren deutliche Vorteile gegenüber dem konventionellen MIMO-Verfahren hinsichtlich der informationstheoretischen Grenzen der Sicherheit auf der physikalischen Schicht aufweist

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Secure Multiple Amplify-and-Forward Relaying Over Correlated Fading Channels

    Get PDF
    This paper quantifies the impact of correlated fading on secure communication of multiple amplify-and-forward (AF) relaying networks. In such a network, the base station (BS) is equipped with multiple antennas and communicates with the destination through multiple AF relays, while the message from the relays can be overheard by an eavesdropper. We focus on the practical communication scenario, where the main and eavesdropper’s channels are correlated. In order to enhance the transmission security, transmit antenna selection (TAS) is performed at the BS, and the best relay is chosen according to the full or partial relay selection criterion, which relies on the dualhop relay channels or the second-hop relay channels, respectively. For these criteria, we study the impact of correlated fading on the network secrecy performance, by deriving an analytical approximation for the secrecy outage probability (SOP) and an asymptotic expression for the high main-to-eavesdropper ratio (MER). From these results, it is concluded that the channel correlation is always beneficial to the secrecy performance of full relay selection. However, it deteriorates the secrecy performance if partial relay selection is used, when the number of antennas at the BS is less than the number of relays.ARC Discovery Projects Grant DP150103905
    corecore