10 research outputs found

    A study of microwave TDFT applicator design for low power cancer ablation

    Get PDF
    The development of therapeutic thermal ablative techniques become viable alternative method to treat patients who cannot be treated by surgery because of high surgical risk or unfavourable tumour location. Microwave ablation is the least invasive technique recently developed for cancer treatment because of its low cost, smaller antenna size and shorter recovery time. However, there are shortcomings of microwave ablation therapy needed to be fulfilled. Unsuccessfully ablated tumour and destruction of large portion of surrounding healthy tissues due to usage of exceptionally high input power which yields lack of control over heating encountered with previously proposed applicator designs. This work investigates the efficacy of using low power ultra-wide band (UWB) microwave applicator in cancer ablation. A novel Tear Drop Flared tipped (TDFT) antenna was proposed as microwave applicator for treating focal malignant tumours using low input power by the means of directed axial radiation. TDFT antenna is modelled and analysed in different surroundings such as saline, healthy and malignant tissue models. Semi-analytical numerical model is introduced to calculate current distributions required on antenna and consequent near-field distribution for achieving homogenous heating conformal to the targeted lesion to overcome nonuniform field distribution of omni-directional radiation. Electromagnetic simulations showed that TDFT antenna achieved minimum reflection stability of -25.89 dB over ultra-wide bandwidth. Electromagnetic and thermal simulations proved that directed axial radiation within targeted lesion produce confined uniform heating at significantly low input power. Moreover, 60 ℃ temperatures were attained for successful ablation and provided more control over heating within the targeted lesion. Highest SAR value attained of 967.3 W/kg for only 3W input power. Thermal analysis revealed that TDFT antenna can achieve a successful ablation of spherical cancerous lesions of diameters of 15.5 mm in 3 minutes for input power of 3W. TDFT antenna was fabricated and tested in egg-white solution and bovine liver. A good agreement between the measured and simulated results were observed where overall efficiency of 99.99% was recorded at the operating frequency. Ablation experiments were conducted in egg-white solution and bovine liver for 1W input power. Feasibility of TDFT antenna as a microwave coagulator was clearly observed in creating confined heating manifested in ablated lesions of 16×19.5×19.5 mm3 for 15-min ablation. Highly-directed End-fire radiation of TDFT antenna noticeably achieves confined heating that facilitates using only 60% of the lowest input power recorded in literature to attain successful ablation in standard radiation exposure time of 15 mins. This reduces power consumption of microwave applicator by almost 40% of the lowest input power used in literature

    Pathogenesis and treatment of skeletal metastasis : studies in animal models

    Get PDF
    The skeleton is one of the most common organs to be affected by metastatic disease. However, only a restricted number of solid cancers, especially those of the breast and prostate, are responsible for the majority of the bone metastases. Bone metastases are a major cause of morbidity, characterized by severe pain and high incidence of fractures, spinal cord compression and bone marrow aplasia requiring hospitalization. Despite the high frequency of skeletal metastases, the molecular mechanisms underlying the predisposition for tumors to colonize bone are poorly understood and treatment options are often unsatisfactory. The focus of this thesis was to better understand the processes that contribute to the formation of distant metastasis (chapter 2), particularly to bone (chapter 4__7), as well as to explore new treatment strategies with conventional (chapter 4 and 5) and novel therapeutic molecules (chapter 6 and 7) using optical imaging to sensitively monitor growth, dissemination and metastasis in mouse models (chapter 3__7).UBL - phd migration 201

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, 1971-2010

    Get PDF
    The Space Shuttle is an engineering marvel perhaps only exceeded by the station itself. The shuttle was based on the technology of the 1960s and early 1970s. It had to overcome significant challenges to make it reusable. Perhaps the greatest challenges were the main engines and the Thermal Protection System. The program has seen terrible tragedy in its 3 decades of operation, yet it has also seen marvelous success. One of the most notable successes is the Hubble Space Telescope, a program that would have been a failure without the shuttle's capability to rendezvous, capture, repair, as well as upgrade. Now Hubble is a shining example of success admired by people around the world. As the program comes to a close, it is important to capture the legacy of the shuttle for future generations. That is what "Wings In Orbit" does for space fans, students, engineers, and scientists. This book, written by the men and women who made the program possible, will serve as an excellent reference for building future space vehicles. We are proud to have played a small part in making it happen. Our journey to document the scientific and engineering accomplishments of this magnificent winged vehicle began with an audacious proposal: to capture the passion of those who devoted their energies to its success while answering the question "What are the most significant accomplishments?" of the longestoperating human spaceflight program in our nation s history. This is intended to be an honest, accurate, and easily understandable account of the research and innovation accomplished during the era

    Medical-Data-Models.org:A collection of freely available forms (September 2016)

    Full text link
    MDM-Portal (Medical Data-Models) is a meta-data repository for creating, analysing, sharing and reusing medical forms, developed by the Institute of Medical Informatics, University of Muenster in Germany. Electronic forms for documentation of patient data are an integral part within the workflow of physicians. A huge amount of data is collected either through routine documentation forms (EHRs) for electronic health records or as case report forms (CRFs) for clinical trials. This raises major scientific challenges for health care, since different health information systems are not necessarily compatible with each other and thus information exchange of structured data is hampered. Software vendors provide a variety of individual documentation forms according to their standard contracts, which function as isolated applications. Furthermore, free availability of those forms is rarely the case. Currently less than 5 % of medical forms are freely accessible. Based on this lack of transparency harmonization of data models in health care is extremely cumbersome, thus work and know-how of completed clinical trials and routine documentation in hospitals are hard to be re-used. The MDM-Portal serves as an infrastructure for academic (non-commercial) medical research to contribute a solution to this problem. It already contains more than 4,000 system-independent forms (CDISC ODM Format, www.cdisc.org, Operational Data Model) with more than 380,000 dataelements. This enables researchers to view, discuss, download and export forms in most common technical formats such as PDF, CSV, Excel, SQL, SPSS, R, etc. A growing user community will lead to a growing database of medical forms. In this matter, we would like to encourage all medical researchers to register and add forms and discuss existing forms
    corecore