442 research outputs found

    Modeling and emergence of flapping flight of butterfly based on experimental measurements

    Get PDF
    The objective of this paper is to clarify the principle of stabilization in flapping-of-wing flight of a butterfly, which is a rhythmic and cyclic motion. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. For the aerodynamic forces, a panel method is applied. Validity of the mathematical models is shown by an agreement of the numerical result with the measured data. Then, periodic orbits of flapping-of-wing flights are searched in order to fly the butterfly models. Almost periodic orbits are obtained, but the model in the searched flapping-of-wing flight is unstable. This research, then, studies how the wake-induced flow and the flexibly torsional wing’s effect on the flight stability. Numerical simulations demonstrate that both the wake-induced flow and the flexible torsion reduces the flight instability. Because the obtained periodic flapping-of-wing flight is unstable, a feedback control system is designed, and a stable flight is realized

    Learning from Nature: Unsteady Flow Physics in Bioinspired Flapping Flight

    Get PDF
    There are few studies on wing flexibility and the associated aerodynamic performance of insect wings during free flight, which are potential candidates for developing bioinspired microaerial vehicles (MAVs). To this end, this chapter aims at understanding wing deformation and motions of insects through a combined experimental and computational approach. Two sets of techniques are currently being developed to make this integration possible: first, data acquisition through the use of high-speed photogrammetry and accurate data reconstruction to quantify the wing and body motions in free flight with great detail and second, direct numerical simulation (DNS) for force measurements and visualization of vortex structures. Unlike most previous studies that focus on the near-field vortex formation mechanisms of a single rigid flapping wing, this chapter presents freely flying insects with full-field vortex structures and associated unsteady aerodynamics at low Reynolds numbers. Our chapter is expected to lead to valuable insights into the underlying physics about flow mechanisms of low Reynolds number flight in nature, which will have great significance to flapping-wing MAV design and optimization research in the future

    An experimental study of the elastic properties of dragonfly-like flapping wings for use in Biomimetic Micro Air Vehicles (BMAV)

    Get PDF
    This article studies the elastic properties of several biomimetic micro air vehicle (BMAV) wings that are based on a dragonfly wing. BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wing motion of flying biological organisms (e.g., insects, birds, and bats). Three structurally identical wings were fabricated using different materials: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and acrylic. Simplified wing frame structures were fabricated from these materials and then a nanocomposite film was adhered to them which mimics the membrane of an actual dragonfly. These wings were then attached to an electromagnetic actuator and passively flapped at frequencies of 10–250 Hz. A three-dimensional high frame rate imaging system was used to capture the flapping motions of these wings at a resolution of 320 pixels × 240 pixels and 35000 frames per second. The maximum bending angle, maximum wing tip deflection, maximum wing tip twist angle, and wing tip twist speed of each wing were measured and compared to each other and the actual dragonfly wing. The results show that the ABS wing has considerable flexibility in the chordwise direction, whereas the PLA and acrylic wings show better conformity to an actual dragonfly wing in the spanwise direction. Past studies have shown that the aerodynamic performance of a BMAV flapping wing is enhanced if its chordwise flexibility is increased and its spanwise flexibility is reduced. Therefore, the ABS wing (fabricated using a 3D printer) shows the most promising results for future applications

    Micro-Scale Flapping Wings for the Advancement of Flying MEMS

    Get PDF
    This research effort presents conceptual micro scale air vehicles whose total dimensions are less than one millimeter. The initial effort was to advance the understanding of micro aerial vehicles at sub-millimeter dimensions by fabricating and testing micro scale flapping wings. Fabrication was accomplished using a surface micromachining process called PolyMUMPs™. Both rigid mechanical structures and biomimetic devices were designed and fabricated as part of this effort. The rigid mechanical structures focused on out of plane deflections with solid connections and assembling a multiple hinge wing structure through the aid of residual stress. These devices were actuated by double hot arm thermal actuators. The biomimetic structures derived from three different insect wings to include; the dragonfly, house fly, and butterfly were selected based off of an attribute that each insect possesses in nature. The dragonfly was chosen for its high maneuverability and hovering capabilities. The house fly wing was chosen because of its durability and the butterfly wing was chosen because of its flexibility. The fabricated wings utilize a thermal bimorph structure consisting of polysilicon and gold which allows device actuation through joule heating. The released micro wings had an initial upward deflection due to residual stress between the gold and polysilicon material layers. Joule heating, from an applied bias, forces the wing to deflect downward due to the coefficient of thermal expansion mismatch between the material layers. Each fabricated bio-wing structure was tested for deflection range as well as operating frequency. From the experimental testing of the micro scale flapping bio-wings, aerodynamic values were calculated to include; aspect ratio, reduced frequency in a hover, Reynolds number of a hovering device, drag force, and gravitational force. The research verified insect based wings on the micro scale are capable of producing the desired flapping motion

    Experimental Characterization of the Structural Dynamics and Aero-Structural Sensitivity of a Hawkmoth Wing Toward the Development of Design Rules for Flapping Wing Micro Air Vehicles

    Get PDF
    A case is made for why the structures discipline must take on a more central role in the research and design of flapping-wing micro-air-vehicles, especially if research trends continue toward bio-inspired, insect-sized flexible wing designs. In making the case, the eigenstructure of the wing emerges as a key structural metric for consideration. But with virtually no structural dynamic data available for actual insect wings, both engineered and computational wing models that have been inspired by biological analogs have no structural truth models to which they can be anchored. An experimental framework is therefore developed herein for performing system identification testing on the wings of insects. This framework is then utilized to characterize the structural dynamics of the forewing of a large sample of hawkmoth (Manduca Sexta) for future design and research consideration. The research also weighs-in on a decade-long debate as to the relative contributions that the inertial and fluid dynamic forces acting on a flapping insect wing have on its deformation (expression) during flight. Ultimately the findings proves that both affect wing expression significantly, casting serious doubt on the longstanding and most frequently cited research that indicates fluid dynamic forces have minimal or negligible effect

    Adaptive evolution of butterfly wing shape: from morphology to behaviour

    Get PDF
    International audienceButterflies display extreme variation in wing shape associated with tremendous ecological diversity. Disentangling the role of neutral versus adaptive processes in wing shape diversification remains a challenge for evolutionary biologists. Ascertaining how natural selection influences wing shape evolution requires both functional studies linking morphology to flight performance, and ecological investigations linking performance in the wild with fitness. However, direct links between morphological variation and fitness have rarely been established. The functional morphology of butterfly flight has been investigated but selective forces acting on flight behaviour and associated wing shape have received less attention. Here, we attempt to estimate the ecological relevance of morpho-functional links established through biomechanical studies in order to understand the evolution of butterfly wing morphology. We survey the evidence for natural and sexual selection driving wing shape evolution in butterflies, and discuss how our functional knowledge may allow identification of the selective forces involved, at both the macro-and micro-evolutionary scales. Our review shows that although correlations between wing shape variation and ecological factors have been established at the macro-evolutionary level, the underlying selective pressures often remain unclear. We identify the need to investigate flight behaviour in relevant ecological contexts to detect variation in fitness-related traits. Identifying the selective regime then should guide experimental studies towards the relevant estimates of flight performance. Habitat, predators and sex-specific behaviours are likely to be major selective forces acting on wing shape evolution in butterflies. Some striking cases of morphological divergence driven by contrasting ecology involve both wing and body morphology, indicating that their interactions should be included in future studies investigating co-evolution between morphology and flight behaviour

    Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques

    Get PDF
    While there have been great advances in the area of Flapping Wing Micro Air Vehicles (FWMAV), prototype parts have been constructed with the objective of scientific discovery and basic research. There has been little effort to make parts that could be consistently and repeatedly manufactured. Until recently, there has been little, if any, focus on methods that could be used and verified by subsequent researchers. It is herein proposed that Microelectromechanical System fabrication methods will provide a fast, cheap, and highly repeatable manufacturing method for the FWMAV wings. The wings manufactured to demonstrate this process, bio-inspired by the Manduca Sexta, were patterned and manufactured from titanium. The process took a relatively short amount of time: three and a half hours from start to finish. Multiple wings were fabricated as a batch during this time. A repeatable method for producing camber in the wing and mounting a membrane on the titanium structure is also presented. These processes will allow parametric testing of FWMAV wings. These wings will be exactly the same, except for specific changes made by the designer, so wing iterations can be compared and studied precisely. The best possible FWMAV wing can be discovered and exactly recreated in this manner. This process may also be easily adapted to mass manufacture of FWMAV wings in industry

    Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control

    Get PDF
    Flying insects impress by their versatility and have been a recurrent source of inspiration for engineering devices. A large body of literature has focused on various aspects of insect flight, with an essential part dedicated to the dynamics of flapping wings and their intrinsically unsteady aerodynamic mechanisms. Insect wings flex during flight and a better understanding of structural mechanics and aeroelasticity is emerging. Most recently, insights from solid and fluid mechanics have been integrated with physiological measurements from visual and mechanosensors in the context of flight control in steady airs and through turbulent conditions. We review the key recent advances concerning flight in unsteady environments and how the multi-body mechanics of the insect structure — wings and body — are at the core of the flight control question. The issues herein should be considered when applying bio-informed design principles to robotic flapping wings

    Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies

    Get PDF
    PMC3547021Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.JH Libraries Open Access Fun

    Plant-pollinator aerodynamics

    Get PDF
    Interactions between plants and pollinators have adapted over long evolutionary timescales and fill a vital ecological role. For flying pollinators, the same coherent aerodynamic mechanisms are employed across the broad Reynolds number range of 100-10,000. This thesis aims to understand some of the physics involved in plant-pollinator aerodynamics. First, studying the impact of an artificial flower wake on maneuverability revealed emergent simplicity in hawkmoth flower tracking dynamics with increased tracking error at the vortex shedding frequencies of the 3D-printed flower. These results establish that unsteady flow affects complex behaviors as well as steady flight performance. Next, the interplay between steady airflow and wing flexibility was explored in two flow regimes: (1) matching airflow conditions for Manduca sexta flight and (2) matching flow conditions known to produce decoherent leading-edge vortices (LEVs) on rigid wings. Although LEVs still burst on flexible hawkmoth wings, the LEV is decoherent over more of the wingspan as flexibility decreases. Enhanced LEV stability in the hawkmoth flight regime revealed that trade-offs between Coriolis forces (from wing rotation) and inertial forces (from both wing translation and the incoming airflow) influence LEV structure and lift force. Last, the wakes of hawkmoth-pollinated flowers were found to be turbulent but some irregular periodic structures were present downstream of small flowers (diameter less than 40 mm). Like many bluff body flow interactions, flower wakes are dominated by a re-circulation zone downstream and hawkmoths hover-feed within the re-circulation bubble. In addition to characterizing the local flow environment for a hovering hawkmoth, this work showed how flow in the flower wake impacts aerodynamic force (with a blade-element model). Despite the broad diversity in floral environments for pollinators, flapping flight (and the LEV in particular) remains a highly effective strategy. Future work can investigate how insects achieve consistent performance across variable environments from behavioral, neurological, and aerodynamic perspectives.Ph.D
    corecore