912 research outputs found

    Effectivity on Continuous Functions in Topological Spaces

    Get PDF
    AbstractIn this paper we investigate aspects of effectivity and computability on partial continuous functions in topological spaces. We use the framework of TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations. We generalize the representations introduced in [Weihrauch, K., “Computable Analysis,” Springer, Berlin, 2000] for the Euclidean case to computable T0-spaces and computably locally compact Hausdorff spaces respectively. We show their equivalence and in particular, prove an effective version of the Stone-Weierstrass approximation theorem

    Products of effective topological spaces and a uniformly computable Tychonoff Theorem

    Full text link
    This article is a fundamental study in computable analysis. In the framework of Type-2 effectivity, TTE, we investigate computability aspects on finite and infinite products of effective topological spaces. For obtaining uniform results we introduce natural multi-representations of the class of all effective topological spaces, of their points, of their subsets and of their compact subsets. We show that the binary, finite and countable product operations on effective topological spaces are computable. For spaces with non-empty base sets the factors can be retrieved from the products. We study computability of the product operations on points, on arbitrary subsets and on compact subsets. For the case of compact sets the results are uniformly computable versions of Tychonoff's Theorem (stating that every Cartesian product of compact spaces is compact) for both, the cover multi-representation and the "minimal cover" multi-representation

    A rich hierarchy of functionals of finite types

    Full text link
    We are considering typed hierarchies of total, continuous functionals using complete, separable metric spaces at the base types. We pay special attention to the so called Urysohn space constructed by P. Urysohn. One of the properties of the Urysohn space is that every other separable metric space can be isometrically embedded into it. We discuss why the Urysohn space may be considered as the universal model of possibly infinitary outputs of algorithms. The main result is that all our typed hierarchies may be topologically embedded, type by type, into the corresponding hierarchy over the Urysohn space. As a preparation for this, we prove an effective density theorem that is also of independent interest.Comment: 21 page

    On the topological aspects of the theory of represented spaces

    Get PDF
    Represented spaces form the general setting for the study of computability derived from Turing machines. As such, they are the basic entities for endeavors such as computable analysis or computable measure theory. The theory of represented spaces is well-known to exhibit a strong topological flavour. We present an abstract and very succinct introduction to the field; drawing heavily on prior work by Escard\'o, Schr\"oder, and others. Central aspects of the theory are function spaces and various spaces of subsets derived from other represented spaces, and -- closely linked to these -- properties of represented spaces such as compactness, overtness and separation principles. Both the derived spaces and the properties are introduced by demanding the computability of certain mappings, and it is demonstrated that typically various interesting mappings induce the same property.Comment: Earlier versions were titled "Compactness and separation for represented spaces" and "A new introduction to the theory of represented spaces

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic
    corecore