2,907 research outputs found

    The Theory of Quasiconformal Mappings in Higher Dimensions, I

    Full text link
    We present a survey of the many and various elements of the modern higher-dimensional theory of quasiconformal mappings and their wide and varied application. It is unified (and limited) by the theme of the author's interests. Thus we will discuss the basic theory as it developed in the 1960s in the early work of F.W. Gehring and Yu G. Reshetnyak and subsequently explore the connections with geometric function theory, nonlinear partial differential equations, differential and geometric topology and dynamics as they ensued over the following decades. We give few proofs as we try to outline the major results of the area and current research themes. We do not strive to present these results in maximal generality, as to achieve this considerable technical knowledge would be necessary of the reader. We have tried to give a feel of where the area is, what are the central ideas and problems and where are the major current interactions with researchers in other areas. We have also added a bit of history here and there. We have not been able to cover the many recent advances generalising the theory to mappings of finite distortion and to degenerate elliptic Beltrami systems which connects the theory closely with the calculus of variations and nonlinear elasticity, nonlinear Hodge theory and related areas, although the reader may see shadows of this aspect in parts

    A theoretical framework for supervised learning from regions

    Get PDF
    Supervised learning is investigated, when the data are represented not only by labeled points but also labeled regions of the input space. In the limit case, such regions degenerate to single points and the proposed approach changes back to the classical learning context. The adopted framework entails the minimization of a functional obtained by introducing a loss function that involves such regions. An additive regularization term is expressed via differential operators that model the smoothness properties of the desired input/output relationship. Representer theorems are given, proving that the optimization problem associated to learning from labeled regions has a unique solution, which takes on the form of a linear combination of kernel functions determined by the differential operators together with the regions themselves. As a relevant situation, the case of regions given by multi-dimensional intervals (i.e., “boxes”) is investigated, which models prior knowledge expressed by logical propositions

    Pointwise differentiability of higher order for sets

    Full text link
    The present paper develops two concepts of pointwise differentiability of higher order for arbitrary subsets of Euclidean space defined by comparing their distance functions to those of smooth submanifolds. Results include that differentials are Borel functions, higher order rectifiability of the set of differentiability points, and a Rademacher result. One concept is characterised by a limit procedure involving inhomogeneously dilated sets. The original motivation to formulate the concepts stems from studying the support of stationary integral varifolds. In particular, strong pointwise differentiability of every positive integer order is shown at almost all points of the intersection of the support with a given plane.Comment: Description of subsequent work added to the introduction, references and affiliations updated, typographical corrections made; 34 page
    • …
    corecore