282 research outputs found

    Link layer protocol performance of indoor infrared wireless communications

    Get PDF
    The increasing deployment of portable computers and mobile devices leads to an increasing demand for wireless connections. Infrared presentsseveral advantagesover radio for indoor wireless connectivity but infrared link quality is affected by ambient infrared noise and by low power transmission levels due to eye safety limitations. The Infrared Data Association (IrDA) has developed the widely used IrDA 1.x protocol standard for short range, narrow beam, point to point connections.IrDA addressedthe requirement for indoor multipoint connectivity with the development of the Advanced Infrared (AIr) protocol stack. This work analyses infrared link layer design based on IrDA proposals for addressing link layer topics and suggests implementation issues and protocol modifications that improve the operation of short range infrared connections. The performance of optical wireless links is measuredby the utilization, which can be drawn at the data link layer. A new mathematical model is developed that reaches a simple equation that calculates IrDA 1.x utilization. The model is validated by comparing its outcome with simulation results obtained using the OPNET modeler. The mathematical model is employed to study the effectiveness on utilization of physical and link layer parameters.The simple equation gives insights for the optimum control of the infrared link for maximum utilization. By differentiating the utilization equation, simple formulas are derived for optimum values of the window and frame size parameters. Analytical results indicate that significant utilization increase is observed if the optimum values are implemented, especially for high error rate links. A protocolimprovement that utilizes special Supervisory frames (S-frames) to pass transmission control is proposed to deal with delays introduced by F-timer expiration. Results indicate that employing the special S-frame highly improves utilization when optimum window and frame size values are implemented. The achieved practical utilization increase for optimum parameter implementation is confirmed by meansof simulation. AIr protocol trades speedfor range by employing Repetition Rate (RR) coding to achieve the increased transmission range required for wireless LAN connectivity. AIr employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A mathematical model is developed for the AIr collision avoidance (CA) procedures and validated by comparing analysis with simulation results. The model is employed to examine the effectiveness of the CA parameters on utilization. By differentiating the utilization equation, the optimum CW size that maximises utilization as a function of the number of the transmitting stations is derived. The proposed linear CW adjustment is very effective in implementing CW values close to optimum and thus minimizing CA delays. AIr implements a Go-Back-N retransmission scheme at high or low level to cope with transmission errors. AIr optionally implements a Stop-and-Wait retransmission scheme to efficiently implement RR coding. Analytical models for the AIr retransmission schemes are developed and employed to compare protocol utilization for different link parametervalues. Finally, the effectiveness of the proposedRR coding on utilization for different retransmission schemes is explored

    Performance modelling and enhancement of wireless communication protocols

    Get PDF
    In recent years, Wireless Local Area Networks(WLANs) play a key role in the data communications and networking areas, having witnessed significant research and development. WLANs are extremely popular being almost everywhere including business,office and home deployments.In order to deal with the modem Wireless connectivity needs,the Institute of Electrical and Electronics Engineers(IEEE) has developed the 802.11 standard family utilizing mainly radio transmission techniques, whereas the Infrared Data Association (IrDA) addressed the requirement for multipoint connectivity with the development of the Advanced Infrared(Alr) protocol stack. This work studies the collision avoidance procedures of the IEEE 802.11 Distributed Coordination Function (DCF) protocol and suggests certain protocol enhancements aiming at maximising performance. A new, elegant and accurate analysis based on Markov chain modelling is developed for the idealistic assumption of unlimited packet retransmissions as well as for the case of finite packet retry limits. Simple equations are derived for the through put efficiency, the average packet delay, the probability of a packet being discarded when it reaches the maximum retransmission limit, the average time to drop such a packet and the packet inter-arrival time for both basic access and RTS/CTS medium access schemes.The accuracy of the mathematical model is validated by comparing analytical with OPNET simulation results. An extensive and detailed study is carried out on the influence of performance of physical layer, data rate, packet payload size and several backoff parameters for both medium access mechanisms. The previous mathematical model is extended to take into account transmission errors that can occur either independently with fixed Bit Error Rate(BER) or in bursts. The dependency of the protocol performance on BER and other factors related to independent and burst transmission errors is explored. Furthermore, a simple-implement appropriate tuning of the back off algorithm for maximizing IEEE 802-11 protocol performance is proposed depending on the specific communication requirements. The effectiveness of the RTS/CTS scheme in reducing collision duration at high data rates is studied and an all-purpose expression for the optimal use of the RTS/CTS reservation scheme is derived. Moreover, an easy-to-implement backoff algorithm that significantly enhances performance is introduced and an alternative derivation is developed based on elementary conditional probability arguments rather than bi-dimensional Markov chains. Finally, an additional performance improvement scheme is proposed by employing packet bursting in order to reduce overhead costs such as contention time and RTS/CTSex changes. Fairness is explored in short-time and long-time scales for both the legacy DCF and packet bursting cases. AIr protocol employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A 1-dimensional Markov chain model is constructed instead of the bi-dimensional model in order to obtain simple mathematical equations of the average packet delay.This new approach greatly simplifies previous analyses and can be applied to any CSMA/CA protocol.The derived mathematical model is validated by comparing analytical with simulation results and an extensive Alr packet delay evaluation is carried out by taking into account all the factors and parameters that affect protocol performance. Finally, suitable values for both backoff and protocol parameters are proposed that reduce average packet delay and, thus, maximize performance

    Performance modelling and enhancement of wireless communication protocols

    Get PDF
    In recent years, Wireless Local Area Networks(WLANs) play a key role in the data communications and networking areas, having witnessed significant research and development. WLANs are extremely popular being almost everywhere including business,office and home deployments.In order to deal with the modem Wireless connectivity needs,the Institute of Electrical and Electronics Engineers(IEEE) has developed the 802.11 standard family utilizing mainly radio transmission techniques, whereas the Infrared Data Association (IrDA) addressed the requirement for multipoint connectivity with the development of the Advanced Infrared(Alr) protocol stack. This work studies the collision avoidance procedures of the IEEE 802.11 Distributed Coordination Function (DCF) protocol and suggests certain protocol enhancements aiming at maximising performance. A new, elegant and accurate analysis based on Markov chain modelling is developed for the idealistic assumption of unlimited packet retransmissions as well as for the case of finite packet retry limits. Simple equations are derived for the through put efficiency, the average packet delay, the probability of a packet being discarded when it reaches the maximum retransmission limit, the average time to drop such a packet and the packet inter-arrival time for both basic access and RTS/CTS medium access schemes.The accuracy of the mathematical model is validated by comparing analytical with OPNET simulation results. An extensive and detailed study is carried out on the influence of performance of physical layer, data rate, packet payload size and several backoff parameters for both medium access mechanisms. The previous mathematical model is extended to take into account transmission errors that can occur either independently with fixed Bit Error Rate(BER) or in bursts. The dependency of the protocol performance on BER and other factors related to independent and burst transmission errors is explored. Furthermore, a simple-implement appropriate tuning of the back off algorithm for maximizing IEEE 802-11 protocol performance is proposed depending on the specific communication requirements. The effectiveness of the RTS/CTS scheme in reducing collision duration at high data rates is studied and an all-purpose expression for the optimal use of the RTS/CTS reservation scheme is derived. Moreover, an easy-to-implement backoff algorithm that significantly enhances performance is introduced and an alternative derivation is developed based on elementary conditional probability arguments rather than bi-dimensional Markov chains. Finally, an additional performance improvement scheme is proposed by employing packet bursting in order to reduce overhead costs such as contention time and RTS/CTSex changes. Fairness is explored in short-time and long-time scales for both the legacy DCF and packet bursting cases. AIr protocol employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A 1-dimensional Markov chain model is constructed instead of the bi-dimensional model in order to obtain simple mathematical equations of the average packet delay.This new approach greatly simplifies previous analyses and can be applied to any CSMA/CA protocol.The derived mathematical model is validated by comparing analytical with simulation results and an extensive Alr packet delay evaluation is carried out by taking into account all the factors and parameters that affect protocol performance. Finally, suitable values for both backoff and protocol parameters are proposed that reduce average packet delay and, thus, maximize performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Analytical and simulation performance modelling of indoor infrared wireless data communications protocols

    Get PDF
    The Infrared (IR) optical medium provides an alternative to radio frequencies (RF) for low cost, low power and short-range indoor wireless data communications. Low-cost optoelectronic components with an unregulated IR spectrum provide the potential for very high-speed wireless communication with good security. However IR links have a limited range and are susceptible to high noise levels from ambient light sources. The Infrared Data Association (IrDA) has produced a set of communication protocol standards (IrDA I. x) for directed point-to-point IR wireless links using a HDLC (High-level Data Link Control) based data link layer which have been widely adopted. To address the requirement for multi-point ad-hoc wireless connectivity, IrDA have produced a new standard (Advanced Infrared -AIr) to support multiple-device non-directed IR Wireless Local Area Networks (WLANs). AIr employs an enhanced physical layer and a CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) based MAC (Media Access Control) layer employing RTS/CTS (Request To Send / Clear To Send) media reservation. This thesis is concerned with the design of IrDA based IR wireless links at the datalink layer, media access sub-layer, and physical layer and presents protocol performance models with the aim of highlighting the critical factors affecting performance and providing recommendations to system designers for parameter settings and protocol enhancements to optimise performance. An analytical model of the IrDA 1.x data link layer (IrLAP Infrared Link Access -Protocol) using Markov analysis of the transmission window width providing saturation condition throughput in relation to the link bit-error-rate (BER), datarate andprotocol parameter settings is presented. Results are presented for simultaneous optimisation of the data packetsize and transmission window size. A simulation model of the IrDA l. x protocol, developed with OPNETTM Modeler, is used for validation of analytical results and to produce non-saturation throughput and delay performance results. An analytical model of the AIr MAC protocol providing saturation condition utilisation and delay results in relation to the number of contending devices and MAC protocol parametersis presented.Results indicate contention window size values for optimum utilisation. The effectiveness of the AIr contention window linear back-off process is examined through Markov analysis. An OPNET simulation model of the Alf protocol is used for validation of the analytical model results and provides non-reservation throughput and delay results. An analytical model of the IR link physical layer is presented and derives expressions for signal-to-noise ratio (SNR) and BER in relation to link transmitter and receiver characteristics, link geometry, noise levels and line encoding schemes. The effect of third user interference on BER and resulting link asymmetry is also examined, indicating the minimum separation distance for adjacent links. Expressions for BER are linked to the data link layer analysis to provide optimum throughput results in relation to physical layer propertiesandlink distance

    Performance modelling of fairness in IEEE 802.11 wireless LAN protocols

    Get PDF
    PhD ThesisWireless communication has become a key technology in the modern world, allowing network services to be delivered in almost any environment, without the need for potentially expensive and invasive fixed cable solutions. However, the level of performance experienced by wireless devices varies tremendously on location and time. Understanding the factors which can cause variability of service is therefore of clear practical and theoretical interest. In this thesis we explore the performance of the IEEE 802.11 family of wireless protocols, which have become the de facto standard for Wireless Local Area Networks (WLANs). The specific performance issue which is investigated is the unfairness which can arise due to the spatial position of nodes in the network. In this work we characterise unfairness in terms of the difference in performance (e.g. throughput) experienced by different pairs of communicating nodes within a network. Models are presented using the Markovian process algebra PEPA which depict different scenarios with three of the main protocols, IEEE 802.11b, IEEE 802.11g and IEEE 802.11n. The analysis shows that performance is affected by the presence of other nodes (including in the well-known hidden node case), by the speed of data and the size of the frames being transmitted. The collection of models and analysis in this thesis collectively provides not only an insight into fairness in IEEE 802.11 networks, but it also represents a significant use case in modelling network protocols using PEPA. PEPA and other stochastic process algebra are extremely powerful tools for efficiently specifying models which might be very complex to study using conventional simulation approaches. Furthermore the tool support for PEPA facilitates the rapid solution of models to derive key metrics which enable the modeller to gain an understanding of the network behaviour across a wide range of operating conditions. From the results we can see that short frames promote a greater fairness due to the more frequent spaces between frames allowing other senders to transmit. An interesting consequence of these findings is the observation that varying frame length can play a role in addressing topological unfairness, which leads to the analysis of a novel model of IEEE 802.11g with variable frame lengths. While varying frame lengths might not always be practically possible, as frames need to be long enough for collisions to be detected, IEEE 802.11n supports a number of mechanisms for frame aggregation, where successive frames may be sent in series with little or no delay between them. We therefore present a novel model of IEEE 802.11n with frame aggregation to explore how this approach affects fairness and, potentially, can be used to address unfairness by allowing affected nodes to transmit longer frame bursts.Kurdistan Region Government of Iraq (KRG) sponso

    Bluetooth User-Driven Cooperative Gallery Using Pull-based Technology

    Get PDF
    The Dissertation ispart ofthe compulsory requirement upon completion ofthe Final Year Project (Part A) and also tofulfill the requirement ofgraduating in Bachelor of Technology (Hons) Information Communication and Technology (ICT). The topic chosen for the project is Bluetooth User-Driven Cooperative Gallery Using Pullbased Technology. The purpose ofthe report isto have an overview ofthe project. It will discuss and clarify all the findings and information which are relevant to the objectives ofthe project. Students will have the opportunity to exercise their writing skills and to clearly communicate their idea and suggestions. Advance in wireless technology are becoming more and more popular throughout the world. In a world of increasing mobility, there is a growing needforpeople to have timely access to information regardless of the location of the individuals or the information. Introduction will cover the background of the project under study, problem statement, and the objectives of the project. The objective is to implement Bluetooth as a suitable wireless transmission technology that is appropriate to be usedfor the Universiti Teknologi PETRONAS Gallery. Literature review is the analytical, critical and objective review of the written materials on the chosen topic. It contains all relevant theories, hypotheses, facts, and data which are relevant to the objective and findings of the project. Methodology will be discussing the identification of the procedure that will be using in the development of the project. This part will also discuss all the tools needed in developing the product in terms of hardware and software needed. Results and conclusion will discuss about the results from the questionnaires made to the students and the clarifications of the design and implementation phase. Lastly, the conclusion is to clarify whether the project has been a success, where all the objectives had been achieved or otherwise as well as therecommendationfor future wor

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Analytical and simulation performance modelling of indoor infrared wireless data communications protocols

    Get PDF
    The Infrared (IR) optical medium provides an alternative to radio frequencies (RF) for low cost, low power and short-range indoor wireless data communications. Low-cost optoelectronic components with an unregulated IR spectrum provide the potential for very high-speed wireless communication with good security. However IR links have a limited range and are susceptible to high noise levels from ambient light sources. The Infrared Data Association (IrDA) has produced a set of communication protocol standards (IrDA I. x) for directed point-to-point IR wireless links using a HDLC (High-level Data Link Control) based data link layer which have been widely adopted. To address the requirement for multi-point ad-hoc wireless connectivity, IrDA have produced a new standard (Advanced Infrared -AIr) to support multiple-device non-directed IR Wireless Local Area Networks (WLANs). AIr employs an enhanced physical layer and a CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) based MAC (Media Access Control) layer employing RTS/CTS (Request To Send / Clear To Send) media reservation. This thesis is concerned with the design of IrDA based IR wireless links at the datalink layer, media access sub-layer, and physical layer and presents protocol performance models with the aim of highlighting the critical factors affecting performance and providing recommendations to system designers for parameter settings and protocol enhancements to optimise performance. An analytical model of the IrDA 1.x data link layer (IrLAP Infrared Link Access -Protocol) using Markov analysis of the transmission window width providing saturation condition throughput in relation to the link bit-error-rate (BER), datarate andprotocol parameter settings is presented. Results are presented for simultaneous optimisation of the data packetsize and transmission window size. A simulation model of the IrDA l. x protocol, developed with OPNETTM Modeler, is used for validation of analytical results and to produce non-saturation throughput and delay performance results. An analytical model of the AIr MAC protocol providing saturation condition utilisation and delay results in relation to the number of contending devices and MAC protocol parametersis presented.Results indicate contention window size values for optimum utilisation. The effectiveness of the AIr contention window linear back-off process is examined through Markov analysis. An OPNET simulation model of the Alf protocol is used for validation of the analytical model results and provides non-reservation throughput and delay results. An analytical model of the IR link physical layer is presented and derives expressions for signal-to-noise ratio (SNR) and BER in relation to link transmitter and receiver characteristics, link geometry, noise levels and line encoding schemes. The effect of third user interference on BER and resulting link asymmetry is also examined, indicating the minimum separation distance for adjacent links. Expressions for BER are linked to the data link layer analysis to provide optimum throughput results in relation to physical layer propertiesandlink distance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    ATM optical wireless networks

    Get PDF
    The aim of the research is to propose, design and evaluate a new wireless communication, local area network (LAN). Such a LAN will be able to extend the asynchronous transfer mode (ATM) wireline technology into indoor optical wireless networks
    • …
    corecore