11,881 research outputs found

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance

    Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises

    Get PDF
    The major success of fuzzy logic in the field of remote control opened the door to its application in many other fields, including finance. However, there has not been an updated and comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason, this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to financial research and, particularly, to the management of banking crises. The data sources were Web of Science and Scopus, followed by an assessment of the records according to pre-established criteria and an arrangement of the information in two main axes: financial markets and corporate finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies, as well as for banks and academic researchers, since it opens the door to several new research axes on banking crisis analyses using artificial intelligence techniques

    Validation and Verification of Future Integrated Safety-Critical Systems Operating under Off-Nominal Conditions

    Get PDF
    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 2: HARP tutorial

    Get PDF
    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. The Hybrid Automated Reliability Predictor (HARP) tutorial provides insight into HARP modeling techniques and the interactive textual prompting input language via a step-by-step explanation and demonstration of HARP's fault occurrence/repair model and the fault/error handling models. Example applications are worked in their entirety and the HARP tabular output data are presented for each. Simple models are presented at first with each succeeding example demonstrating greater modeling power and complexity. This document is not intended to present the theoretical and mathematical basis for HARP

    Predicting failure in the commercial banking industry

    Get PDF
    The ability to predict bank failure has become much more important since the mortgage foreclosure crisis began in 2007. The model proposed in this study uses proxies for the regulatory standards embodied in the so-called CAMELS rating system, as well as several local or national economic variables to produce a model that is robust enough to forecast bank failure for the entire commercial bank industry in the United States. This model is able to predict failure (survival) accurately for commercial banks during both the Savings and Loan crisis and the mortgage foreclosure crisis. Other important results include the insignificance of several factors proposed in the literature, including total assets, real price of energy, currency ratio and the interest rate spread.bank failure; banking crises; CAMELS ratings
    • …
    corecore