10,618 research outputs found

    DYNIQX: A novel meta-search engine for the web

    Get PDF
    The effect of metadata in collection fusion has not been sufficiently studied. In response to this, we present a novel meta-search engine called Dyniqx for metadata based search. Dyniqx integrates search results from search services of documents, images, and videos for generating a unified list of ranked search results. Dyniqx exploits the availability of metadata in search services such as PubMed, Google Scholar, Google Image Search, and Google Video Search etc for fusing search results from heterogeneous search engines. In addition, metadata from these search engines are used for generating dynamic query controls such as sliders and tick boxes etc which are used by users to filter search results. Our preliminary user evaluation shows that Dyniqx can help users complete information search tasks more efficiently and successfully than three well known search engines respectively. We also carried out one controlled user evaluation of the integration of six document/image/video based search engines (Google Scholar, PubMed, Intute, Google Image, Yahoo Image, and Google Video) in Dyniqx. We designed a questionnaire for evaluating different aspect of Dyniqx in assisting users complete search tasks. Each user used Dyniqx to perform a number of search tasks before completing the questionnaire. Our evaluation results confirm the effectiveness of the meta-search of Dyniqx in assisting user search tasks, and provide insights into better designs of the Dyniqx' interface

    Measures of effectiveness for data fusion based on information entropy

    Get PDF
    This thesis is concerned with measuring and predicting the performance and effectiveness of a data fusion process. Its central proposition is that information entropy may be used to quantify concisely the effectiveness of the process. The personal and original contribution to that subject which is contained in this thesis is summarised as follows: The mixture of performance behaviours that occur in a data fusion system are described and modelled as the states of an ergodic Markov process. An new analytic approach to combining the entropy of discrete and continuous information is defined. A new simple and accurate model of data association performance is proposed. A new model is proposed for the propagation of information entropy in an minimum mean square combination of track estimates. A new model is proposed for the propagation of the information entropy of object classification belief as new observations are incorporated in a recursive Bayesian classifier. A new model to quantify the information entropy of the penalty of ignorance is proposed. New formulations of the steady state solution of the matrix Riccati equation to model tracker performance are proposed

    The Unreasonable Success of Quantum Probability I: Quantum Measurements as Uniform Fluctuations

    Get PDF
    We introduce a 'uniform tension-reduction' (UTR) model, which allows to represent the probabilities associated with an arbitrary measurement situation and use it to explain the emergence of quantum probabilities (the Born rule) as 'uniform' fluctuations on this measurement situation. The model exploits the geometry of simplexes to represent the states, in a way that the measurement probabilities can be derived as the 'Lebesgue measure' of suitably defined convex subregions of the simplexes. We consider a very simple and evocative physical realization of the abstract model, using a material point particle which is acted upon by elastic membranes, which by breaking and collapsing produce the different possible outcomes. This easy to visualize mechanical realization allows one to gain considerable insight into the possible hidden structure of an arbitrary measurement process. We also show that the UTR-model can be further generalized into a 'general tension-reduction' (GTR) model, describing conditions of lack of knowledge generated by 'non-uniform' fluctuations. In this ampler framework, particularly suitable to describe experiments in cognitive science, we define and motivate a notion of 'universal measurement', describing the most general possible condition of lack of knowledge in a measurement, emphasizing that the uniform fluctuations characterizing quantum measurements can also be understood as an average over all possible forms of non-uniform fluctuations which can be actualized in a measurement context. This means that the Born rule of quantum mechanics can be understood as a first order approximation of a more general non-uniform theory, thus explaining part of the great success of quantum probability in the description of different domains of reality. This is the first part of a two-part article.Comment: 50 pages, 10 figure
    • …
    corecore