21,365 research outputs found

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems

    Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A Systematic Review

    Get PDF
    Cyber-security is the practice of protecting computing systems and networks from digital attacks, which are a rising concern in the Information Age. With the growing pace at which new attacks are developed, conventional signature based attack detection methods are often not enough, and machine learning poses as a potential solution. Adversarial machine learning is a research area that examines both the generation and detection of adversarial examples, which are inputs specially crafted to deceive classifiers, and has been extensively studied specifically in the area of image recognition, where minor modifications are performed on images that cause a classifier to produce incorrect predictions. However, in other fields, such as intrusion and malware detection, the exploration of such methods is still growing. The aim of this survey is to explore works that apply adversarial machine learning concepts to intrusion and malware detection scenarios. We concluded that a wide variety of attacks were tested and proven effective in malware and intrusion detection, although their practicality was not tested in intrusion scenarios. Adversarial defenses were substantially less explored, although their effectiveness was also proven at resisting adversarial attacks. We also concluded that, contrarily to malware scenarios, the variety of datasets in intrusion scenarios is still very small, with the most used dataset being greatly outdated

    TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS

    Get PDF
    With the exponential growth of network-based applications globally, there has been a transformation in organizations\u27 business models. Furthermore, cost reduction of both computational devices and the internet have led people to become more technology dependent. Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore, the process of improving the speed and accuracy of security mechanisms has become crucial.Although abundant new security tools have been developed, the rapid-growth of malicious activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe threats to network security. Classical security techniquesfor instance, firewallsare used as a first line of defense against security problems but remain unable to detect internal intrusions or adequately provide security countermeasures. Thus, network administrators tend to rely predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine Learning is one of the practical approaches to intrusion detection that learns from data to differentiate between normal and malicious traffic. Although Machine Learning approaches are used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion detection has received less attention in the literature.Moreover, adequate datasets are necessary to train and evaluate anomaly-based network intrusion detection systems. There exist a number of such datasetsas DARPA, KDDCUP, and NSL-KDDthat have been widely adopted by researchers to train and evaluate the performance of their proposed intrusion detection approaches. Based on several studies, many such datasets are outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic diversity and volumes, do not cover the variety of attacks, have anonymized packet information and payload that cannot reflect the current trends, or lack feature set and metadata.This thesis provides a comprehensive analysis of some of the existing Machine Learning approaches for identifying network intrusions. Specifically, it analyzes the algorithms along various dimensionsnamely, feature selection, sensitivity to the hyper-parameter selection, and class imbalance problemsthat are inherent to intrusion detection. It also produces a new reliable dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria, contains normal and different classes of attacks, and reflects the current network traffic trends. The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the thesis proposes an ensemble classifier model composed of multiple classifiers with different learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion detection systems

    Machine Learning Based Network Vulnerability Analysis of Industrial Internet of Things

    Full text link
    It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of machine learning in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using machine learning models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a machine learning based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods

    Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems

    Get PDF
    The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning, we identify and model the real capabilities and circumstances required by attackers to carry out feasible and successful adversarial attacks. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this paper can help hardening defensive systems by letting cyber defenders address the most critical and real issues, and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models

    Improved hybrid teaching learning based optimization-jaya and support vector machine for intrusion detection systems

    Get PDF
    Most of the currently existing intrusion detection systems (IDS) use machine learning algorithms to detect network intrusion. Machine learning algorithms have widely been adopted recently to enhance the performance of IDSs. While the effectiveness of some machine learning algorithms in detecting certain types of network intrusion has been ascertained, the situation remains that no single method currently exists that can achieve consistent results when employed for the detection of multiple attack types. Hence, the detection of network attacks on computer systems has remain a relevant field of research for some time. The support vector machine (SVM) is one of the most powerful machine learning algorithms with excellent learning performance characteristics. However, SVM suffers from many problems, such as high rates of false positive alerts, as well as low detection rates of rare but dangerous attacks that affects its performance; feature selection and parameters optimization are important operations needed to increase the performance of SVM. The aim of this work is to develop an improved optimization method for IDS that can be efficient and effective in subset feature selection and parameters optimization. To achieve this goal, an improved Teaching Learning-Based Optimization (ITLBO) algorithm was proposed in dealing with subset feature selection. Meanwhile, an improved parallel Jaya (IPJAYA) algorithm was proposed for searching the best parameters (C, Gama) values of SVM. Hence, a hybrid classifier called ITLBO-IPJAYA-SVM was developed in this work for the improvement of the efficiency of network intrusion on data sets that contain multiple types of attacks. The performance of the proposed approach was evaluated on NSL-KDD and CICIDS intrusion detection datasets and from the results, the proposed approaches exhibited excellent performance in the processing of large datasets. The results also showed that SVM optimization algorithm achieved accuracy values of 0.9823 for NSL-KDD dataset and 0.9817 for CICIDS dataset, which were higher than the accuracy of most of the existing paradigms for classifying network intrusion detection datasets. In conclusion, this work has presented an improved optimization algorithm that can improve the accuracy of IDSs in the detection of various types of network attack

    DEFEATING MASQUERADE DETECTION

    Get PDF
    A masquerader is an attacker who has obtained access to a legitimate user’s computer and is pretending to be that user. The masquerader’s goal is to conduct an attack while remaining undetected. Hidden Markov models (HMM) are well-known machine learning techniques that have been used successfully in a wide variety of fields, including speech recognition, malware detection, and intrusion detection systems. Previous research has shown that HMM trained on a user’s UNIX commands can provide an effective means of masquerade detection. Na ̈ Bayes is a simple classifier based on Bayes Theorem, ıve which relies on the command frequency. In this project we empirically test various masquerade mimicry strategies, that is, strategies for evading masquerade detection. We develop and analyze four distinct masquerade mimicry strategies and in each case, we give empirical results for their effectiveness at evading Na ̈ Bayes and ıve HMM-based masquerade detection
    • …
    corecore