1,582 research outputs found

    A density version of the Carlson--Simpson theorem

    Full text link
    We prove a density version of the Carlson--Simpson Theorem. Specifically we show the following. For every integer k2k\geq 2 and every set AA of words over kk satisfying lim supnA[k]nkn>0\limsup_{n\to\infty} \frac{|A\cap [k]^n|}{k^n}>0 there exist a word cc over kk and a sequence (wn)(w_n) of left variable words over kk such that the set {c}{cw0(a0)...wn(an):nN  and  a0,...,an[k]}\{c\}\cup \big\{c^{\smallfrown}w_0(a_0)^{\smallfrown}...^{\smallfrown}w_n(a_n) : n\in\mathbb{N} \ \text{ and } \ a_0,...,a_n\in [k]\big\} is contained in AA. While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.Comment: 73 pages, no figure

    The complexity of satisfaction problems in reverse mathematics

    Get PDF
    Satisfiability problems play a central role in computer science and engineering as a general framework for studying the complexity of various problems. Schaefer proved in 1978 that truth satisfaction of propositional formulas given a language of relations is either NP-complete or tractable. We classify the corresponding satisfying assignment construction problems in the framework of reverse mathematics and show that the principles are either provable over RCA or equivalent to WKL. We formulate also a Ramseyan version of the problems and state a different dichotomy theorem. However, the different classes arising from this classification are not known to be distinct.Comment: 19 page

    On the number of types in sparse graphs

    Full text link
    We prove that for every class of graphs C\mathcal{C} which is nowhere dense, as defined by Nesetril and Ossona de Mendez, and for every first order formula ϕ(xˉ,yˉ)\phi(\bar x,\bar y), whenever one draws a graph GCG\in \mathcal{C} and a subset of its nodes AA, the number of subsets of AyˉA^{|\bar y|} which are of the form {vˉAyˉ ⁣:Gϕ(uˉ,vˉ)}\{\bar v\in A^{|\bar y|}\, \colon\, G\models\phi(\bar u,\bar v)\} for some valuation uˉ\bar u of xˉ\bar x in GG is bounded by O(Axˉ+ϵ)\mathcal{O}(|A|^{|\bar x|+\epsilon}), for every ϵ>0\epsilon>0. This provides optimal bounds on the VC-density of first-order definable set systems in nowhere dense graph classes. We also give two new proofs of upper bounds on quantities in nowhere dense classes which are relevant for their logical treatment. Firstly, we provide a new proof of the fact that nowhere dense classes are uniformly quasi-wide, implying explicit, polynomial upper bounds on the functions relating the two notions. Secondly, we give a new combinatorial proof of the result of Adler and Adler stating that every nowhere dense class of graphs is stable. In contrast to the previous proofs of the above results, our proofs are completely finitistic and constructive, and yield explicit and computable upper bounds on quantities related to uniform quasi-wideness (margins) and stability (ladder indices)

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page
    corecore