10,748 research outputs found

    Deep Extreme Cut: From Extreme Points to Object Segmentation

    Full text link
    This paper explores the use of extreme points in an object (left-most, right-most, top, bottom pixels) as input to obtain precise object segmentation for images and videos. We do so by adding an extra channel to the image in the input of a convolutional neural network (CNN), which contains a Gaussian centered in each of the extreme points. The CNN learns to transform this information into a segmentation of an object that matches those extreme points. We demonstrate the usefulness of this approach for guided segmentation (grabcut-style), interactive segmentation, video object segmentation, and dense segmentation annotation. We show that we obtain the most precise results to date, also with less user input, in an extensive and varied selection of benchmarks and datasets. All our models and code are publicly available on http://www.vision.ee.ethz.ch/~cvlsegmentation/dextr/.Comment: CVPR 2018 camera ready. Project webpage and code: http://www.vision.ee.ethz.ch/~cvlsegmentation/dextr

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Click Carving: Segmenting Objects in Video with Point Clicks

    Full text link
    We present a novel form of interactive video object segmentation where a few clicks by the user helps the system produce a full spatio-temporal segmentation of the object of interest. Whereas conventional interactive pipelines take the user's initialization as a starting point, we show the value in the system taking the lead even in initialization. In particular, for a given video frame, the system precomputes a ranked list of thousands of possible segmentation hypotheses (also referred to as object region proposals) using image and motion cues. Then, the user looks at the top ranked proposals, and clicks on the object boundary to carve away erroneous ones. This process iterates (typically 2-3 times), and each time the system revises the top ranked proposal set, until the user is satisfied with a resulting segmentation mask. Finally, the mask is propagated across the video to produce a spatio-temporal object tube. On three challenging datasets, we provide extensive comparisons with both existing work and simpler alternative methods. In all, the proposed Click Carving approach strikes an excellent balance of accuracy and human effort. It outperforms all similarly fast methods, and is competitive or better than those requiring 2 to 12 times the effort.Comment: A preliminary version of the material in this document was filed as University of Texas technical report no. UT AI16-0

    Coarse-to-Fine Annotation Enrichment for Semantic Segmentation Learning

    Full text link
    Rich high-quality annotated data is critical for semantic segmentation learning, yet acquiring dense and pixel-wise ground-truth is both labor- and time-consuming. Coarse annotations (e.g., scribbles, coarse polygons) offer an economical alternative, with which training phase could hardly generate satisfactory performance unfortunately. In order to generate high-quality annotated data with a low time cost for accurate segmentation, in this paper, we propose a novel annotation enrichment strategy, which expands existing coarse annotations of training data to a finer scale. Extensive experiments on the Cityscapes and PASCAL VOC 2012 benchmarks have shown that the neural networks trained with the enriched annotations from our framework yield a significant improvement over that trained with the original coarse labels. It is highly competitive to the performance obtained by using human annotated dense annotations. The proposed method also outperforms among other state-of-the-art weakly-supervised segmentation methods.Comment: CIKM 2018 International Conference on Information and Knowledge Managemen

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Feature Decoupling-Recycling Network for Fast Interactive Segmentation

    Full text link
    Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input without considering the invariant nature of the source image. As a result, extracting features from the source image is repeated in each interaction, resulting in substantial computational redundancy. In this work, we propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies and then recycles components for each user interaction. Thus, the efficiency of the whole interactive process can be significantly improved. To be specific, we apply the Decoupling-Recycling strategy from three perspectives to address three types of discrepancies, respectively. First, our model decouples the learning of source image semantics from the encoding of user guidance to process two types of input domains separately. Second, FDRN decouples high-level and low-level features from stratified semantic representations to enhance feature learning. Third, during the encoding of user guidance, current user guidance is decoupled from historical guidance to highlight the effect of current user guidance. We conduct extensive experiments on 6 datasets from different domains and modalities, which demonstrate the following merits of our model: 1) superior efficiency than other methods, particularly advantageous in challenging scenarios requiring long-term interactions (up to 4.25x faster), while achieving favorable segmentation performance; 2) strong applicability to various methods serving as a universal enhancement technique; 3) well cross-task generalizability, e.g., to medical image segmentation, and robustness against misleading user guidance.Comment: Accepted to ACM MM 202
    • …
    corecore