261,258 research outputs found

    Demonstration of decomposition and optimization in the design of experimental space systems

    Get PDF
    Effective design strategies for a class of systems which may be termed Experimental Space Systems (ESS) are needed. These systems, which include large space antenna and observatories, space platforms, earth satellites and deep space explorers, have special characteristics which make them particularly difficult to design. It is argued here that these same characteristics encourage the use of advanced computer-aided optimization and planning techniques. The broad goal of this research is to develop optimization strategies for the design of ESS. These strategics would account for the possibly conflicting requirements of mission life, safety, scientific payoffs, initial system cost, launch limitations and maintenance costs. The strategies must also preserve the coupling between disciplines or between subsystems. Here, the specific purpose is to describe a computer-aided planning and scheduling technique. This technique provides the designer with a way to map the flow of data between multidisciplinary analyses. The technique is important because it enables the designer to decompose the system design problem into a number of smaller subproblems. The planning and scheduling technique is demonstrated by its application to a specific preliminary design problem

    The relationship between computer interaction and individual user characteristics

    Get PDF
    Development of effective human computer interaction is being approached independently by two disciplines -- user interface design and computer aided instruction. The lack of communication between the two fields has left each separately pursuing different paths toward the same goals. This thesis attempts to bridge the gap between these two disciplines. An exploratory study was conducted to analyze whether user choices in a computer aided instruction environment and personality types as defined by the Myers-Briggs type indicator are related strongly enough to provide the basis for future user models. The results demonstrated that no single instructional strategy was preferred, implying the need for more than one user model. The amount of instruction chosen did not increase performance. These conclusions have impact on research efforts to understand how both user and system characteristics influence the use of computer technology. The current research efforts to incorporate artificial intelligence techniques by both user interface designers and computer aided instruction developers has heightened the need for knowledge-based systems incorporating interdisciplinary research efforts

    A semi-automated process for the production of custom-made shoes

    Get PDF
    A more efficient, cost-effective and timely way of designing and manufacturing custom footware is needed. A potential solution to this problem lies in the use of computer-aided design and manufacturing (CAD/CAM) techniques in the production of custom shoes. A prototype computer-based system was developed, and the system is primarily a software entity which directs and controls a 3-D scanner, a lathe or milling machine, and a pattern-cutting machine to produce the shoe last and the components to be assembled into a shoe. The steps in this process are: (1) scan the surface of the foot to obtain a 3-D image; (2) thin the foot surface data and create a tiled wire model of the foot; (3) interactively modify the wire model of the foot to produce a model of the shoe last; (4) machine the last; (5) scan the surface of the last and verify that it correctly represents the last model; (6) design cutting patterns for shoe uppers; (7) cut uppers; (8) machine an inverse mold for the shoe innersole/sole combination; (9) mold the innersole/sole; and (10) assemble the shoe. For all its capabilities, this system still requires the direction and assistance of skilled operators, and shoemakers to assemble the shoes. Currently, the system is running on a SUN3/260 workstation with TAAC application accelerator. The software elements of the system are written in either Fortran or C and run under a UNIX operator system

    A Geometric Feature-based Stress and Deformation Estimation Model for Optimal Assembly Part Positioning on Transformable Pin-jigs

    Get PDF
    Department of System Design and Control EngineeringRecently, the increasing demand for customization, innovative products, and the rapid change in customer demands have resulted in shorter product lifecycles and more cost effective technologies. As a result, the recent trend in manufacturing is to use reconfigurable manufacturing systems for providing a cost effective and rapid response to customer demands. With regard to jigs, a reconfigurable jig is necessary to achieve reconfigurability of entire system. Therefore, a reconfigurable jig with computer-aided design and finite element analysis is introduced. Unlike conventional jigs, the reconfigurable jig can change its shape depending on the shape of the product. The reconfigurable jig was implemented using pins. In this study, the reconfigurable jig system is designed for the process of assembling the car door inner modules. Because the pin-jig can be adjusted in terms of size or spacing, it can be applied to products of various sizes. Therefore, it can be used to build a reconfigurable manufacturing system. However, the problem with traditional pin-jig is that the initial product placement is visually ambiguous and insufficient in quality compared to existing jigs. In order to solve these problems, many researchers have used computer-aided design to acquire visual assistance. In addition, the computer-aided design helps in automatically calculating the strokes of pin-jigs. To evaluate the quality of a product, some experiment was conducted by applying finite element analysis to the product and pin-jigs. The method to evaluating the quality of a product involves analysis of the stress and deformation of a product according to the shape of the product. From the result of finite element analysis, the shapes were prioritized to decide the best location for the product. These methods help the reconfigurable jig to locate the product appropriately. In addition, an assistance method to locate a part with a geometric feature-based stress and deformation estimation model for optimal assembly part positioning were developed.clos

    Portable implementation of computer aided design environment for composite structures

    Get PDF
    Composite materials are widely used due to their low weight, long durability and the ability to tailor their properties to specific design requirements. Their wide range of applications requires a solid understanding of their behavior under different load conditions. The calculations needed for efficient and accurate design of composites could be exhaustive and time consuming. Therefore an efficient computer program which would facilitate effective design becomes a key factor to supporting commercial use of composite materials.;A portable software tool was developed in Java programming environment for design analysis of composite materials. This software tool is superior to its predecessor, the Computer Aided Design Environment for Composite software (CADEC). The Java software is an exact replica of the CADEC software, which is written in Toolbook. The only major difference is that the new program is rewritten in a portable language. The software imposes no restrictions on the accessibility or the usability of this tool. The software can be accessed via internet and it can be run on any operation system as long as a Java enabled browser is available. The software tool has been evaluated using the example problems taken from the text book Introduction to Composite Materials Design written by Dr. Ever J. Barbero. The results obtained by using the new tool are sufficiently close to the text book results

    Function-Based Computer Aided Conceptual Design Support Tool

    Get PDF
    Conceptual design is considered as the most critical and important phase of design process. It is the stage where product’s fundamental features are determined, large proportion of the lifecycle cost of the product is committed, and other major decisions are made, which have significant impact on the downstream design and related manufacturing processes. It is a knowledge intensive process where diverse knowledge and several years of experience are put together to design quality and cost effective products. Unfortunately, computer support systems for this phase are lagging behind compared to the currently available commercial computer aided design (CAD) tools for the later stage of design to reduce the designers workload and product development time. The overall goal of this research is to provide designers with computational tool that support conceptual design process. To achieve this goal a methodology that integrates systematic design approach with knowledge-based system is proposed in this thesis. Accordingly, a framework of computer based computational tool known as conceptual design support tool (CDST) is developed using the proposed methodology. The tool assists designers in performing functional modeling by providing standard vocabularies of functions in the form of function library, generate concepts stored in the database from previous designs, display the generated concepts on the morphology chart, combine the concepts and evaluate the concepts variants. Concepts from subsea processing equipment design have been collected and saved in the database. The tool also accepts new concepts from the designer through its knowledge acquisition system to be saved in the database for future use. In doing so, it is possible to integrate human creativity with data handling capabilities of computers to perform conceptual design more efficiently than solely manual design. The tool can also be used as a knowledge management system to preserve expert’s knowledge and train novice designers. The applicability of the proposed methodology and developed tool is illustrated and validated by using a case study and validation test conducted by independent evaluators

    Water Distribution System Computer-Aided Design by Agent Swarm Optimization

    Full text link
    Optimal design of water distribution systems (WDS), including the sizing of components, quality control, reliability, renewal and rehabilitation strategies, etc., is a complex problem in water engineering that requires robust methods of optimization. Classical methods of optimization are not well suited for analyzing highly-dimensional, multimodal, non-linear problems, especially given inaccurate, noisy, discrete and complex data. Agent Swarm Optimization (ASO) is a novel paradigm that exploits swarm intelligence and borrows some ideas from multiagent based systems. It is aimed at supporting decisionmaking processes by solving multi-objective optimization problems. ASO offers robustness through a framework where various population-based algorithms co-exist. The ASO framework is described and used to solve the optimal design of WDS. The approach allows engineers to work in parallel with the computational algorithms to force the recruitment of new searching elements, thus contributing to the solution process with expert-based proposals.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Spanish Ministry of Education and Science, and ACOMP/2010/146 of the education department of the Generalitat Valenciana. The use of English was revised by John Rawlins.Montalvo Arango, I.; Izquierdo Sebastián, J.; Pérez García, R.; Herrera Fernández, AM. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering. 29(6):433-448. https://doi.org/10.1111/mice.12062S433448296Adeli, H., & Kumar, S. (1995). Distributed Genetic Algorithm for Structural Optimization. Journal of Aerospace Engineering, 8(3), 156-163. doi:10.1061/(asce)0893-1321(1995)8:3(156)Afshar, M. H., Akbari, M., & Mariño, M. A. (2005). Simultaneous Layout and Size Optimization of Water Distribution Networks: Engineering Approach. Journal of Infrastructure Systems, 11(4), 221-230. doi:10.1061/(asce)1076-0342(2005)11:4(221)Amini, F., Hazaveh, N. K., & Rad, A. A. (2013). Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers. Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-557. doi:10.1111/mice.12017Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Badawy, R., Yassine, A., Heßler, A., Hirsch, B., & Albayrak, S. (2013). A novel multi-agent system utilizing quantum-inspired evolution for demand side management in the future smart grid. Integrated Computer-Aided Engineering, 20(2), 127-141. doi:10.3233/ica-130423Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51. doi:10.1007/bf00940812Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Díaz , J. L. Herrera , M. Izquierdo , J. Montalvo , I. Pérez-García , R. 2008 A particle swarm optimization derivative applied to cluster analysisDorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436Dridi, L., Parizeau, M., Mailhot, A., & Villeneuve, J.-P. (2008). Using Evolutionary Optimization Techniques for Scheduling Water Pipe Renewal Considering a Short Planning Horizon. Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-635. doi:10.1111/j.1467-8667.2008.00564.xDuan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. doi:10.1007/bf00939380Duchesne, S., Beardsell, G., Villeneuve, J.-P., Toumbou, B., & Bouchard, K. (2012). A Survival Analysis Model for Sewer Pipe Structural Deterioration. Computer-Aided Civil and Infrastructure Engineering, 28(2), 146-160. doi:10.1111/j.1467-8667.2012.00773.xDupont, G., Adam, S., Lecourtier, Y., & Grilheres, B. (2008). Multi objective particle swarm optimization using enhanced dominance and guide selection. International Journal of Computational Intelligence Research, 4(2). doi:10.5019/j.ijcir.2008.134Fougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Fuggini, C., Chatzi, E., & Zangani, D. (2012). Combining Genetic Algorithms with a Meso-Scale Approach for System Identification of a Smart Polymeric Textile. Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-245. doi:10.1111/j.1467-8667.2012.00789.xZong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Gutierrez-Garcia, J. O., & Sim, K. M. (2012). Agent-based cloud workflow execution. Integrated Computer-Aided Engineering, 19(1), 39-56. doi:10.3233/ica-2012-0387Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P., & Yu, W.-D. (2012). Neuro-Fuzzy Cost Estimation Model Enhanced by Fast Messy Genetic Algorithms for Semiconductor Hookup Construction. Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-781. doi:10.1111/j.1467-8667.2012.00786.xIzquierdo , J. Minciardi , R. Montalvo , I. Robba , M. Tavera , M. 2008a Particle swarm optimization for the biomass supply chain strategic planning 1272 80Izquierdo , J. Montalvo , I. Herrera , M. Pérez-García , R. 2012 A general purpose non-linear optimization framework based on particle swarm optimizationIzquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Izquierdo , J. Montalvo , I. Pérez , R. Tavera , M. 2008b Optimization in water systems: a PSO approach 239 46Jafarkhani, R., & Masri, S. F. (2010). Finite Element Model Updating Using Evolutionary Strategy for Damage Detection. Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-224. doi:10.1111/j.1467-8667.2010.00687.xJanson, S., Merkle, D., & Middendorf, M. (2008). Molecular docking with multi-objective Particle Swarm Optimization. Applied Soft Computing, 8(1), 666-675. doi:10.1016/j.asoc.2007.05.005Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Keedwell, E., & Khu, S.-T. (2006). Novel Cellular Automata Approach to Optimal Water Distribution Network Design. Journal of Computing in Civil Engineering, 20(1), 49-56. doi:10.1061/(asce)0887-3801(2006)20:1(49)Kennedy , J. Eberhart , R. C. 1995 Particle swarm optimization 1942 48Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)KIM, H., & ADELI, H. (2001). DISCRETE COST OPTIMIZATION OF COMPOSITE FLOORS USING A FLOATING-POINT GENETIC ALGORITHM. Engineering Optimization, 33(4), 485-501. doi:10.1080/03052150108940930Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2Montalvo Arango, I. (s. f.). Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization. doi:10.4995/thesis/10251/14858Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Moscato , P. 1989 On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic AlgorithmsNejat, A., & Damnjanovic, I. (2012). Agent-Based Modeling of Behavioral Housing Recovery Following Disasters. Computer-Aided Civil and Infrastructure Engineering, 27(10), 748-763. doi:10.1111/j.1467-8667.2012.00787.xPark, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Paya, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2008). Multiobjective Optimization of Concrete Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596-610. doi:10.1111/j.1467-8667.2008.00561.xPinto, T., Praça, I., Vale, Z., Morais, H., & Sousa, T. M. (2013). Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. Integrated Computer-Aided Engineering, 20(4), 335-346. doi:10.3233/ica-130438Putha, R., Quadrifoglio, L., & Zechman, E. (2011). Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions. Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. doi:10.1111/j.1467-8667.2010.00715.xRaich, A. M., & Liszkai, T. R. (2011). Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification. Computer-Aided Civil and Infrastructure Engineering, 27(2), 95-117. doi:10.1111/j.1467-8667.2011.00726.xRodríguez-Seda, E. J., Stipanović, D. M., & Spong, M. W. (2012). Teleoperation of multi-agent systems with nonuniform control input delays. Integrated Computer-Aided Engineering, 19(2), 125-136. doi:10.3233/ica-2012-0396Saldarriaga , J. G. Bernal , A. Ochoa , S. 2008 Optimized design of water distribution network enlargements using resilience and dissipated power concepts 298 312Sarma, K. C., & Adeli, H. (2000). Fuzzy Genetic Algorithm for Optimization of Steel Structures. Journal of Structural Engineering, 126(5), 596-604. doi:10.1061/(asce)0733-9445(2000)126:5(596)Sgambi, L., Gkoumas, K., & Bontempi, F. (2012). Genetic Algorithms for the Dependability Assurance in the Design of a Long-Span Suspension Bridge. Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-675. doi:10.1111/j.1467-8667.2012.00780.xShafahi, Y., & Bagherian, M. (2012). A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem. Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67. doi:10.1111/j.1467-8667.2012.00769.xTanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Tao, H., Zain, J. M., Ahmed, M. M., Abdalla, A. N., & Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integrated Computer-Aided Engineering, 19(1), 81-91. doi:10.3233/ica-2012-0392Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Vitins, B. J., & Axhausen, K. W. (2009). Optimization of Large Transport Networks Using the Ant Colony Heuristic. Computer-Aided Civil and Infrastructure Engineering, 24(1), 1-14. doi:10.1111/j.1467-8667.2008.00569.xVrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8). doi:10.1029/2002wr001746Vrugt, J. A., Ó Nualláin, B., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32(8), 1139-1155. doi:10.1016/j.cageo.2005.10.015Vrugt , J. A. Robinson , B. A. 2007 Improved evolutionary search from genetically adaptive multi-search method 104 3 708 11Wu , Z. Y. Wang , R. H. Walski , T. M. Yang , S. Y. Bowdler , D. Baggett , C. C. 2006 Efficient pressure dependent demand model for large water distribution system analysisXie, C., & Waller, S. T. (2011). Optimal Routing with Multiple Objectives: Efficient Algorithm and Application to the Hazardous Materials Transportation Problem. Computer-Aided Civil and Infrastructure Engineering, 27(2), 77-94. doi:10.1111/j.1467-8667.2011.00720.xXu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Zeferino, J. A., Antunes, A. P., & Cunha, M. C. (2009). An Efficient Simulated Annealing Algorithm for Regional Wastewater System Planning. Computer-Aided Civil and Infrastructure Engineering, 24(5), 359-370. doi:10.1111/j.1467-8667.2009.00594.

    MEADE: A Modular, Extensible, Adaptable Design Environment for ASIC and FPGA Development

    Full text link
    We present MEADE, a Modular, Extensible, Adaptable Design Environment. MEADE has been developed to answer the need for an adaptive design framework for encapsulation of Computer Aided Design (CAD) tools and management of the massive amounts of data associated with the design process. Other frameworks have existed but lacked the critical open source requirement that enables rapid adaptation to a rapidly advancing design methodology. While the initial application and development of MEADE is targeted toward ASIC and FPGA design, the MEADE engine can be easily adapted to abstract any procedural application. MEADE allows the definition of procedures, which are defined as some sequence or flow of actions, which can be performed by potentially multiple different agents. With this system, design methodology management is specified in the procedures. Tool interoperability is handled by the action definitions. The unique agents perform tool interchangeability (the use of “best-inclass” tools). All details of procedure implementation are extended outside of the MEADE microkernel to the individual agent modules (Source code control, code builds, multi-user simulations, etc.). With an open, extensible system, the design community will be able to integrate specific design flows and account for sitespecific variances. Additionally, new CAD tools can be rapidly integrated into a design flow for effective evaluation. It is believed that the simple modular interface and open-source philosophy will enable MEADE to succeed where other CAD frameworks have failed
    corecore