244 research outputs found

    Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction

    Full text link
    The correction of exposure-related issues is a pivotal component in enhancing the quality of images, offering substantial implications for various computer vision tasks. Historically, most methodologies have predominantly utilized spatial domain recovery, offering limited consideration to the potentialities of the frequency domain. Additionally, there has been a lack of a unified perspective towards low-light enhancement, exposure correction, and multi-exposure fusion, complicating and impeding the optimization of image processing. In response to these challenges, this paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks. Our method introduces Holistic Frequency Attention and Dynamic Frequency Feed-Forward Network, which replace conventional correlation computation in the spatial-domain. They form a foundational building block that facilitates a U-shaped Holistic Dynamic Frequency Transformer as a filter to extract global information and dynamically select important frequency bands for image restoration. Complementing this, we employ a Laplacian pyramid to decompose images into distinct frequency bands, followed by multiple restorers, each tuned to recover specific frequency-band information. The pyramid fusion allows a more detailed and nuanced image restoration process. Ultimately, our structure unifies the three tasks of low-light enhancement, exposure correction, and multi-exposure fusion, enabling comprehensive treatment of all classical exposure errors. Benchmarking on mainstream datasets for these tasks, our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction

    Empowering Low-Light Image Enhancer through Customized Learnable Priors

    Full text link
    Deep neural networks have achieved remarkable progress in enhancing low-light images by improving their brightness and eliminating noise. However, most existing methods construct end-to-end mapping networks heuristically, neglecting the intrinsic prior of image enhancement task and lacking transparency and interpretability. Although some unfolding solutions have been proposed to relieve these issues, they rely on proximal operator networks that deliver ambiguous and implicit priors. In this work, we propose a paradigm for low-light image enhancement that explores the potential of customized learnable priors to improve the transparency of the deep unfolding paradigm. Motivated by the powerful feature representation capability of Masked Autoencoder (MAE), we customize MAE-based illumination and noise priors and redevelop them from two perspectives: 1) \textbf{structure flow}: we train the MAE from a normal-light image to its illumination properties and then embed it into the proximal operator design of the unfolding architecture; and m2) \textbf{optimization flow}: we train MAE from a normal-light image to its gradient representation and then employ it as a regularization term to constrain noise in the model output. These designs improve the interpretability and representation capability of the model.Extensive experiments on multiple low-light image enhancement datasets demonstrate the superiority of our proposed paradigm over state-of-the-art methods. Code is available at https://github.com/zheng980629/CUE.Comment: Accepted by ICCV 202

    Iterative Prompt Learning for Unsupervised Backlit Image Enhancement

    Full text link
    We propose a novel unsupervised backlit image enhancement method, abbreviated as CLIP-LIT, by exploring the potential of Contrastive Language-Image Pre-Training (CLIP) for pixel-level image enhancement. We show that the open-world CLIP prior not only aids in distinguishing between backlit and well-lit images, but also in perceiving heterogeneous regions with different luminance, facilitating the optimization of the enhancement network. Unlike high-level and image manipulation tasks, directly applying CLIP to enhancement tasks is non-trivial, owing to the difficulty in finding accurate prompts. To solve this issue, we devise a prompt learning framework that first learns an initial prompt pair by constraining the text-image similarity between the prompt (negative/positive sample) and the corresponding image (backlit image/well-lit image) in the CLIP latent space. Then, we train the enhancement network based on the text-image similarity between the enhanced result and the initial prompt pair. To further improve the accuracy of the initial prompt pair, we iteratively fine-tune the prompt learning framework to reduce the distribution gaps between the backlit images, enhanced results, and well-lit images via rank learning, boosting the enhancement performance. Our method alternates between updating the prompt learning framework and enhancement network until visually pleasing results are achieved. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability, without requiring any paired data.Comment: Accepted to ICCV 2023 as Oral. Project page: https://zhexinliang.github.io/CLIP_LIT_page

    Endoscopic Vision Augmentation Using Multiscale Bilateral-Weighted Retinex for Robotic Surgery

    Get PDF
    医疗机器人手术视觉是微创外科手术成功与否的关键所在。由于手术器械医学电子内镜自身内在的局限性,导致了手术视野不清晰、光照不均、多烟雾等诸多问题,使得外科医生无法准确快速感知与识别人体内部器官中的神经血管以及病灶位置等结构信息,这无疑增加了手术风险和手术时间。针对这些手术视觉问题,本论文提出了一种基于双边滤波权重分析的多尺度Retinex模型方法,对达芬奇医疗机器人手术过程中所采集到的病患视频进行处理与分析。经过外科医生对实验结果的主观评价,一致认为该方法能够大幅度地增强手术视野质量;同时客观评价实验结果表明本论文所提出方法优于目前计算机视觉领域内的图像增强与恢复方法。 厦门大学信息科学与技术学院计算机科学系罗雄彪教授为本文第一作者。【Abstract】Endoscopic vision plays a significant role in minimally invasive surgical procedures. The visibility and maintenance of such direct in-situ vision is paramount not only for safety by preventing inadvertent injury, but also to improve precision and reduce operating time. Unfortunately, endoscopic vision is unavoidably degraded due to illumination variations during surgery. This work aims to restore or augment such degraded visualization and quantitatively evaluate it during robotic surgery. A multiscale bilateral-weighted retinex method is proposed to remove non-uniform and highly directional illumination and enhance surgical vision, while an objective noreference image visibility assessment method is defined in terms of sharpness, naturalness, and contrast, to quantitatively and objectively evaluate endoscopic visualization on surgical video sequences. The methods were validated on surgical data, with the experimental results showing that our method outperforms existent retinex approaches. In particular, the combined visibility was improved from 0.81 to 1.06, while three surgeons generally agreed that the results were restored with much better visibility.The authors thank the assistance of Dr. Stephen Pautler for facilitating the data acquisition, Dr. A. Jonathan McLeod and Dr.Uditha Jayarathne for helpful discussions
    corecore