3,125 research outputs found

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    QPACE 2 and Domain Decomposition on the Intel Xeon Phi

    Get PDF
    We give an overview of QPACE 2, which is a custom-designed supercomputer based on Intel Xeon Phi processors, developed in a collaboration of Regensburg University and Eurotech. We give some general recommendations for how to write high-performance code for the Xeon Phi and then discuss our implementation of a domain-decomposition-based solver and present a number of benchmarks.Comment: plenary talk at Lattice 2014, to appear in the conference proceedings PoS(LATTICE2014), 15 pages, 9 figure

    Using shared-data localization to reduce the cost of inspector-execution in unified-parallel-C programs

    Get PDF
    Programs written in the Unified Parallel C (UPC) language can access any location of the entire local and remote address space via read/write operations. However, UPC programs that contain fine-grained shared accesses can exhibit performance degradation. One solution is to use the inspector-executor technique to coalesce fine-grained shared accesses to larger remote access operations. A straightforward implementation of the inspector executor transformation results in excessive instrumentation that hinders performance.; This paper addresses this issue and introduces various techniques that aim at reducing the generated instrumentation code: a shared-data localization transformation based on Constant-Stride Linear Memory Descriptors (CSLMADs) [S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.], the inlining of data locality checks and the usage of an index vector to aggregate the data. Finally, the paper introduces a lightweight loop code motion transformation to privatize shared scalars that were propagated through the loop body.; A performance evaluation, using up to 2048 cores of a POWER 775, explores the impact of each optimization and characterizes the overheads of UPC programs. It also shows that the presented optimizations increase performance of UPC programs up to 1.8 x their UPC hand-optimized counterpart for applications with regular accesses and up to 6.3 x for applications with irregular accesses.Peer ReviewedPostprint (author's final draft
    • …
    corecore