4,784 research outputs found

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    WEST: A Web Browser for Small Terminals

    Get PDF
    We describe WEST, a WEb browser for Small Terminals, that aims to solve some of the problems associated with accessing web pages on hand-held devices. Through a novel combination of text reduction and focus+context visualization, users can access web pages from a very limited display environment, since the system will provide an overview of the contents of a web page even when it is too large to be displayed in its entirety. To make maximum use of the limited resources available on a typical hand-held terminal, much of the most demanding work is done by a proxy server, allowing the terminal to concentrate on the task of providing responsive user interaction. The system makes use of some interaction concepts reminiscent of those defined in the Wireless Application Protocol (WAP), making it possible to utilize the techniques described here for WAP-compliant devices and services that may become available in the near future

    Lazier Than Lazy Greedy

    Full text link
    Is it possible to maximize a monotone submodular function faster than the widely used lazy greedy algorithm (also known as accelerated greedy), both in theory and practice? In this paper, we develop the first linear-time algorithm for maximizing a general monotone submodular function subject to a cardinality constraint. We show that our randomized algorithm, STOCHASTIC-GREEDY, can achieve a (11/eε)(1-1/e-\varepsilon) approximation guarantee, in expectation, to the optimum solution in time linear in the size of the data and independent of the cardinality constraint. We empirically demonstrate the effectiveness of our algorithm on submodular functions arising in data summarization, including training large-scale kernel methods, exemplar-based clustering, and sensor placement. We observe that STOCHASTIC-GREEDY practically achieves the same utility value as lazy greedy but runs much faster. More surprisingly, we observe that in many practical scenarios STOCHASTIC-GREEDY does not evaluate the whole fraction of data points even once and still achieves indistinguishable results compared to lazy greedy.Comment: In Proc. Conference on Artificial Intelligence (AAAI), 201
    corecore