3,227 research outputs found

    Non-thermalization in trapped atomic ion spin chains

    Full text link
    Linear arrays of trapped and laser cooled atomic ions are a versatile platform for studying emergent phenomena in strongly-interacting many-body systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatiotemporal resolution, decoupling from the external environment, and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin-models which are heralded by memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.Comment: 14 pages, 5 figures, submitted for edition of Phil. Trans. R. Soc. A on "Breakdown of ergodicity in quantum systems

    Optimized dynamical control of state transfer through noisy spin chains

    Get PDF
    We propose a method of optimally controlling the tradeoff of speed and fidelity of state transfer through a noisy quantum channel (spin-chain). This process is treated as qubit state-transfer through a fermionic bath. We show that dynamical modulation of the boundary-qubits levels can ensure state transfer with the best tradeoff of speed and fidelity. This is achievable by dynamically optimizing the transmission spectrum of the channel. The resulting optimal control is robust against both static and fluctuating noise in the channel's spin-spin couplings. It may also facilitate transfer in the presence of diagonal disorder (on site energy noise) in the channel.Comment: 20 pages, 5 figures. arXiv admin note: text overlap with arXiv:1310.162

    Simulating open quantum systems: from many-body interactions to stabilizer pumping

    Get PDF
    In a recent experiment, Barreiro et al. demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions [Nature 470, 486 (2011)]. Using up to five ions, single- and multi-qubit entangling gate operations were combined with optical pumping in stroboscopic sequences. This enabled the implementation of both coherent many-body dynamics as well as dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In the present paper, we present the theoretical framework of this gate-based ("digital") simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach minimal instances of spin models of interest in the context of topological quantum computing and condensed matter physics can be realized in state-of-the-art linear ion-trap quantum computing architectures. We outline concrete simulation schemes for Kitaev's toric code Hamiltonian and a recently suggested color code model. The presented simulation protocols can be adapted to scalable and two-dimensional ion-trap architectures, which are currently under development.Comment: 27 pages, 9 figures, submitted to NJP Focus on Topological Quantum Computatio

    Interacting Qubit-Photon Bound States with Superconducting Circuits

    Full text link
    Qubits strongly coupled to a photonic crystal give rise to many exotic physical scenarios, beginning with single and multi-excitation qubit-photon dressed bound states comprising induced spatially localized photonic modes, centered around the qubits, and the qubits themselves. The localization of these states changes with qubit detuning from the band-edge, offering an avenue of in situ control of bound state interaction. Here, we present experimental results from a device with two qubits coupled to a superconducting microwave photonic crystal and realize tunable on-site and inter-bound state interactions. We observe a fourth-order two photon virtual process between bound states indicating strong coupling between the photonic crystal and qubits. Due to their localization-dependent interaction, these states offer the ability to create one-dimensional chains of bound states with tunable and potentially long-range interactions that preserve the qubits' spatial organization, a key criterion for realization of certain quantum many-body models. The widely tunable, strong and robust interactions demonstrated with this system are promising benchmarks towards realizing larger, more complex systems of bound states

    Simulation of Classical Thermal States on a Quantum Computer: A Transfer Matrix Approach

    Get PDF
    We present a hybrid quantum-classical algorithm to simulate thermal states of a classical Hamiltonians on a quantum computer. Our scheme employs a sequence of locally controlled rotations, building up the desired state by adding qubits one at a time. We identify a class of classical models for which our method is efficient and avoids potential exponential overheads encountered by Grover-like or quantum Metropolis schemes. Our algorithm also gives an exponential advantage for 2D Ising models with magnetic field on a square lattice, compared with the previously known Zalka's algorithm.Comment: 5 pages, 3 figures; (new in version 2: added new figure, title changed, rearranged paragraphs
    • …
    corecore