852 research outputs found

    Optimized Training Design for Wireless Energy Transfer

    Full text link
    Radio-frequency (RF) enabled wireless energy transfer (WET), as a promising solution to provide cost-effective and reliable power supplies for energy-constrained wireless networks, has drawn growing interests recently. To overcome the significant propagation loss over distance, employing multi-antennas at the energy transmitter (ET) to more efficiently direct wireless energy to desired energy receivers (ERs), termed \emph{energy beamforming}, is an essential technique for enabling WET. However, the achievable gain of energy beamforming crucially depends on the available channel state information (CSI) at the ET, which needs to be acquired practically. In this paper, we study the design of an efficient channel acquisition method for a point-to-point multiple-input multiple-output (MIMO) WET system by exploiting the channel reciprocity, i.e., the ET estimates the CSI via dedicated reverse-link training from the ER. Considering the limited energy availability at the ER, the training strategy should be carefully designed so that the channel can be estimated with sufficient accuracy, and yet without consuming excessive energy at the ER. To this end, we propose to maximize the \emph{net} harvested energy at the ER, which is the average harvested energy offset by that used for channel training. An optimization problem is formulated for the training design over MIMO Rician fading channels, including the subset of ER antennas to be trained, as well as the training time and power allocated. Closed-form solutions are obtained for some special scenarios, based on which useful insights are drawn on when training should be employed to improve the net transferred energy in MIMO WET systems.Comment: 30 pages, 9 figures, to appear in IEEE Trans. on Communication

    Asymptotic Analysis of Multicell Massive MIMO over Rician Fading Channels

    Get PDF
    This work considers the downlink of a multicell massive MIMO system in which LL base stations (BSs) of NN antennas each communicate with KK single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician fading channel. The analysis is conducted assuming that NN and KK grow large with a non-trivial ratio N/KN/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.Comment: 7 pages, 2 figures, submitted to GLOBECOM16, Washington, DC USA. arXiv admin note: text overlap with arXiv:1601.0702
    corecore