9,120 research outputs found

    Persistent homology for 3D reconstruction evaluation

    Get PDF
    Space or voxel carving is a non-invasive technique that is used to produce a 3D volume and can be used in particular for the reconstruction of a 3D human model from images captured from a set of cameras placed around the subject. In [1], the authors present a technique to quantitatively evaluate spatially carved volumetric representations of humans using a synthetic dataset of typical sports motion in a tennis court scenario, with regard to the number of cameras used. In this paper, we compute persistent homology over the sequence of chain complexes obtained from the 3D outcomes with increasing number of cameras. This allows us to analyze the topological evolution of the reconstruction process, something which as far as we are aware has not been investigated to date

    Computing Persistent Homology within Coq/SSReflect

    Full text link
    Persistent homology is one of the most active branches of Computational Algebraic Topology with applications in several contexts such as optical character recognition or analysis of point cloud data. In this paper, we report on the formal development of certified programs to compute persistent Betti numbers, an instrumental tool of persistent homology, using the Coq proof assistant together with the SSReflect extension. To this aim it has been necessary to formalize the underlying mathematical theory of these algorithms. This is another example showing that interactive theorem provers have reached a point where they are mature enough to tackle the formalization of nontrivial mathematical theories

    On the nonlinear statistics of range image patches

    Get PDF
    In [A. B. Lee, K. S. Pedersen, and D. Mumford, Int. J. Comput. Vis., 54 (2003), pp. 83–103], the authors study the distributions of 3 × 3 patches from optical images and from range images. In [G. Carlsson, T. Ishkanov, V. de Silva, and A. Zomorodian, Int. J. Comput. Vis., 76 (2008), pp. 1–12], the authors apply computational topological tools to the data set of optical patches studied by Lee, Pedersen, and Mumford and find geometric structures for high density subsets. One high density subset is called the primary circle and essentially consists of patches with a line separating a light and a dark region. In this paper, we apply the techniques of Carlsson et al. to range patches. By enlarging to 5×5 and 7×7 patches, we find core subsets that have the topology of the primary circle, suggesting a stronger connection between optical patches and range patches than was found by Lee, Pedersen, and Mumford

    Algebraic Topology

    Full text link
    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.Comment: This manuscript will be published as Chapter 5 in Wiley's textbook \emph{Mathematical Tools for Physicists}, 2nd edition, edited by Michael Grinfeld from the University of Strathclyd
    corecore