4,125 research outputs found

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Deep learning for i-vector speaker and language recognition

    Get PDF
    Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without any need of speaker or phonetic labels. In order to fill the performance gap between cosine and PLDA scoring given unlabeled background data, we have proposed an impostor selection algorithm and a universal model adaptation process in a hybrid system based on Deep Belief Networks (DBNs) and Deep Neural Networks (DNNs) to discriminatively model each target speaker. In order to have more insight into the behavior of DL techniques in both single and multi-session speaker enrollment tasks, some experiments have been carried out in both scenarios. Experiments on the National Institute of Standard and Technology (NIST) 2014 i-vector challenge show that 46% of this performance gap, in terms of minDCF, is filled by the proposed DL-based system. Furthermore, the score combination of the proposed DL-based system and PLDA with estimated labels covers 79% of this gap. In the second line of the research, we have developed an efficient alternative vector representation of speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The proposed vectors will be based on both Gaussian Mixture Models (GMMs) and Restricted Boltzmann Machines (RBMs) and will be referred to as GMM-RBM vectors. The role of RBM is to learn the total speaker and session variability among background GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and different transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Unit (ReLU) which is referred to as Variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of the NIST Speaker Recognition Evaluation (SRE) 2010 show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector extraction process. Finally, for the Language Identification (LID) application, we have proposed a DNN architecture to model effectively the i-vector space of four languages, English, Spanish, German, and Finnish, in the car environment. Both raw i-vectors and session variability compensated i-vectors are evaluated as input vectors to DNN. The performance of the proposed DNN architecture is compared with both conventional GMM-UBM and i-vector/Linear Discriminant Analysis (LDA) systems considering the effect of duration of signals. It is shown that the signals with duration between 2 and 3 sec meet the accuracy and speed requirements of this application, in which the proposed DNN architecture outperforms GMM-UBM and i-vector/LDA systems by 37% and 28%, respectively.En los últimos años, los i-vectores han sido la técnica de referencia en el reconocimiento de hablantes y de idioma. Los últimos avances en la tecnología de Aprendizaje Profundo (Deep Learning. DL) han mejorado la calidad de los i-vectores, pero las técnicas DL en uso son computacionalmente costosas y necesitan datos etiquetados para cada hablante y/o unidad fon ética, los cuales no son fácilmente accesibles en la práctica. La falta de datos etiquetados provoca una gran diferencia de los resultados en el reconocimiento de hablante con i-vectors entre las dos técnicas de evaluación más utilizados: distancia coseno y Análisis Lineal Discriminante Probabilístico (PLDA). Por el momento, sigue siendo un reto cómo reducir esta brecha sin disponer de las etiquetas de los hablantes, que son costosas de obtener. Aunque se han propuesto algunas técnicas de agrupamiento sin supervisión para estimar las etiquetas de los hablantes, no pueden estimar las etiquetas con precisión. Esta tesis trata de resolver los problemas mencionados usando la tecnología DL de diferentes maneras, sin necesidad de etiquetas de hablante o fon éticas. Con el fin de reducir la diferencia de resultados entre distancia coseno y PLDA a partir de datos no etiquetados, hemos propuesto un algoritmo selección de impostores y la adaptación a un modelo universal en un sistema hibrido basado en Deep Belief Networks (DBN) y Deep Neural Networks (DNN) para modelar a cada hablante objetivo de forma discriminativa. Con el fin de tener más información sobre el comportamiento de las técnicas DL en las tareas de identificación de hablante en una única sesión y en varias sesiones, se han llevado a cabo algunos experimentos en ambos escenarios. Los experimentos utilizando los datos del National Institute of Standard and Technology (NIST) 2014 i-vector Challenge muestran que el 46% de esta diferencia de resultados, en términos de minDCF, se reduce con el sistema propuesto basado en DL. Además, la combinación de evaluaciones del sistema propuesto basado en DL y PLDA con etiquetas estimadas reduce el 79% de esta diferencia. En la segunda línea de la investigación, hemos desarrollado una representación vectorial alternativa eficiente de la voz manteniendo el coste computacional lo más bajo posible y evitando las etiquetas fon éticas, Los vectores propuestos se basan tanto en el Modelo de Mezcla de Gaussianas (GMM) y en las Maquinas Boltzmann Restringidas (RBM), a los que se hacer referencia como vectores GMM-RBM. El papel de la RBM es aprender la variabilidad total del hablante y de la sesión entre los supervectores del GMM gen érico. Este RBM, al que se hará referencia como RBM Universal (URBM), se utilizará para transformar supervectores ocultos en los vectores propuestos, de menor dimensión. Además, se estudia el uso de diferentes funciones de activación para el entrenamiento de la URBM y diferentes funciones de transformación para extraer los vectores propuestos. Finalmente, se propone una variante de la Unidad Lineal Rectificada (ReLU) a la que se hace referencia como Variable ReLU (VReLU). Los experimentos sobre los datos de la condición 5 del test de la NIST Speaker Recognition Evaluation (SRE) 2010 muestran que se han conseguidos resultados comparables con los i-vectores convencionales, con una carga computacional claramente inferior en el proceso de extracción de vectores. Por último, para la aplicación de Identificación de Idioma (LID), hemos propuesto una arquitectura DNN para modelar eficazmente en el entorno del coche el espacio i-vector de cuatro idiomas: inglés, español, alemán y finlandés. Tanto los i-vectores originales como los i-vectores propuestos son evaluados como vectores de entrada a DNN. El rendimiento de la arquitectura DNN propuesta se compara con los sistemas convencionales GMM-UBM y i-vector/Análisis Discriminante Lineal (LDA) considerando el efecto de la duración de las señales. Se muestra que en caso de señales con una duración entre 2 y 3 se obtienen resultados satisfactorios en cuanto a precisión y resultados, superando a los sistemas GMM-UBM y i-vector/LDA en un 37% y 28%, respectivament

    Unsupervised crosslingual adaptation of tokenisers for spoken language recognition

    Get PDF
    Phone tokenisers are used in spoken language recognition (SLR) to obtain elementary phonetic information. We present a study on the use of deep neural network tokenisers. Unsupervised crosslingual adaptation was performed to adapt the baseline tokeniser trained on English conversational telephone speech data to different languages. Two training and adaptation approaches, namely cross-entropy adaptation and state-level minimum Bayes risk adaptation, were tested in a bottleneck i-vector and a phonotactic SLR system. The SLR systems using the tokenisers adapted to different languages were combined using score fusion, giving 7-18% reduction in minimum detection cost function (minDCF) compared with the baseline configurations without adapted tokenisers. Analysis of results showed that the ensemble tokenisers gave diverse representation of phonemes, thus bringing complementary effects when SLR systems with different tokenisers were combined. SLR performance was also shown to be related to the quality of the adapted tokenisers

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning
    • …
    corecore