16,167 research outputs found

    A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property

    Full text link
    We present an architecture of a recurrent neural network (RNN) with a fully-connected deep neural network (DNN) as its feature extractor. The RNN is equipped with both causal temporal prediction and non-causal look-ahead, via auto-regression (AR) and moving-average (MA), respectively. The focus of this paper is a primal-dual training method that formulates the learning of the RNN as a formal optimization problem with an inequality constraint that provides a sufficient condition for the stability of the network dynamics. Experimental results demonstrate the effectiveness of this new method, which achieves 18.86% phone recognition error on the TIMIT benchmark for the core test set. The result approaches the best result of 17.7%, which was obtained by using RNN with long short-term memory (LSTM). The results also show that the proposed primal-dual training method produces lower recognition errors than the popular RNN methods developed earlier based on the carefully tuned threshold parameter that heuristically prevents the gradient from exploding

    Effective Representations of Clinical Notes

    Full text link
    Clinical notes are a rich source of information about patient state. However, using them to predict clinical events with machine learning models is challenging. They are very high dimensional, sparse and have complex structure. Furthermore, training data is often scarce because it is expensive to obtain reliable labels for many clinical events. These difficulties have traditionally been addressed by manual feature engineering encoding task specific domain knowledge. We explored the use of neural networks and transfer learning to learn representations of clinical notes that are useful for predicting future clinical events of interest, such as all causes mortality, inpatient admissions, and emergency room visits. Our data comprised 2.7 million notes and 115 thousand patients at Stanford Hospital. We used the learned representations, along with commonly used bag of words and topic model representations, as features for predictive models of clinical events. We evaluated the effectiveness of these representations with respect to the performance of the models trained on small datasets. Models using the neural network derived representations performed significantly better than models using the baseline representations with small (N<1000N < 1000) training datasets. The learned representations offer significant performance gains over commonly used baseline representations for a range of predictive modeling tasks and cohort sizes, offering an effective alternative to task specific feature engineering when plentiful labeled training data is not available

    Deep Learning with the Random Neural Network and its Applications

    Full text link
    The random neural network (RNN) is a mathematical model for an "integrate and fire" spiking network that closely resembles the stochastic behaviour of neurons in mammalian brains. Since its proposal in 1989, there have been numerous investigations into the RNN's applications and learning algorithms. Deep learning (DL) has achieved great success in machine learning. Recently, the properties of the RNN for DL have been investigated, in order to combine their power. Recent results demonstrate that the gap between RNNs and DL can be bridged and the DL tools based on the RNN are faster and can potentially be used with less energy expenditure than existing methods.Comment: 23 pages, 19 figure

    Deep Frank-Wolfe For Neural Network Optimization

    Full text link
    Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm or its adaptive variants. However, SGD requires a hand-designed schedule for the learning rate. In addition, its adaptive variants tend to produce solutions that generalize less well on unseen data than SGD with a hand-designed schedule. We present an optimization method that offers empirically the best of both worlds: our algorithm yields good generalization performance while requiring only one hyper-parameter. Our approach is based on a composite proximal framework, which exploits the compositional nature of deep neural networks and can leverage powerful convex optimization algorithms by design. Specifically, we employ the Frank-Wolfe (FW) algorithm for SVM, which computes an optimal step-size in closed-form at each time-step. We further show that the descent direction is given by a simple backward pass in the network, yielding the same computational cost per iteration as SGD. We present experiments on the CIFAR and SNLI data sets, where we demonstrate the significant superiority of our method over Adam, Adagrad, as well as the recently proposed BPGrad and AMSGrad. Furthermore, we compare our algorithm to SGD with a hand-designed learning rate schedule, and show that it provides similar generalization while converging faster. The code is publicly available at https://github.com/oval-group/dfw.Comment: Published as a conference paper at ICLR 201

    Combining Neural Networks and Log-linear Models to Improve Relation Extraction

    Full text link
    The last decade has witnessed the success of the traditional feature-based method on exploiting the discrete structures such as words or lexical patterns to extract relations from text. Recently, convolutional and recurrent neural networks has provided very effective mechanisms to capture the hidden structures within sentences via continuous representations, thereby significantly advancing the performance of relation extraction. The advantage of convolutional neural networks is their capacity to generalize the consecutive k-grams in the sentences while recurrent neural networks are effective to encode long ranges of sentence context. This paper proposes to combine the traditional feature-based method, the convolutional and recurrent neural networks to simultaneously benefit from their advantages. Our systematic evaluation of different network architectures and combination methods demonstrates the effectiveness of this approach and results in the state-of-the-art performance on the ACE 2005 and SemEval dataset

    Evaluating Sequence-to-Sequence Models for Handwritten Text Recognition

    Full text link
    Encoder-decoder models have become an effective approach for sequence learning tasks like machine translation, image captioning and speech recognition, but have yet to show competitive results for handwritten text recognition. To this end, we propose an attention-based sequence-to-sequence model. It combines a convolutional neural network as a generic feature extractor with a recurrent neural network to encode both the visual information, as well as the temporal context between characters in the input image, and uses a separate recurrent neural network to decode the actual character sequence. We make experimental comparisons between various attention mechanisms and positional encodings, in order to find an appropriate alignment between the input and output sequence. The model can be trained end-to-end and the optional integration of a hybrid loss allows the encoder to retain an interpretable and usable output, if desired. We achieve competitive results on the IAM and ICFHR2016 READ data sets compared to the state-of-the-art without the use of a language model, and we significantly improve over any recent sequence-to-sequence approaches.Comment: 8 pages, 1 figure, 8 table

    Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models

    Full text link
    The surging availability of electronic medical records (EHR) leads to increased research interests in medical predictive modeling. Recently many deep learning based predicted models are also developed for EHR data and demonstrated impressive performance. However, a series of recent studies showed that these deep models are not safe: they suffer from certain vulnerabilities. In short, a well-trained deep network can be extremely sensitive to inputs with negligible changes. These inputs are referred to as adversarial examples. In the context of medical informatics, such attacks could alter the result of a high performance deep predictive model by slightly perturbing a patient's medical records. Such instability not only reflects the weakness of deep architectures, more importantly, it offers guide on detecting susceptible parts on the inputs. In this paper, we propose an efficient and effective framework that learns a time-preferential minimum attack targeting the LSTM model with EHR inputs, and we leverage this attack strategy to screen medical records of patients and identify susceptible events and measurements. The efficient screening procedure can assist decision makers to pay extra attentions to the locations that can cause severe consequence if not measured correctly. We conduct extensive empirical studies on a real-world urgent care cohort and demonstrate the effectiveness of the proposed screening approach

    Visual Attention Model for Cross-sectional Stock Return Prediction and End-to-End Multimodal Market Representation Learning

    Full text link
    Technical and fundamental analysis are traditional tools used to analyze individual stocks; however, the finance literature has shown that the price movement of each individual stock correlates heavily with other stocks, especially those within the same sector. In this paper we propose a general purpose market representation that incorporates fundamental and technical indicators and relationships between individual stocks. We treat the daily stock market as a "market image" where rows (grouped by market sector) represent individual stocks and columns represent indicators. We apply a convolutional neural network over this market image to build market features in a hierarchical way. We use a recurrent neural network, with an attention mechanism over the market feature maps, to model temporal dynamics in the market. We show that our proposed model outperforms strong baselines in both short-term and long-term stock return prediction tasks. We also show another use for our market image: to construct concise and dense market embeddings suitable for downstream prediction tasks.Comment: Accepted as full paper in the 32nd International FLAIRS Conferenc

    FINN-L: Library Extensions and Design Trade-off Analysis for Variable Precision LSTM Networks on FPGAs

    Full text link
    It is well known that many types of artificial neural networks, including recurrent networks, can achieve a high classification accuracy even with low-precision weights and activations. The reduction in precision generally yields much more efficient hardware implementations in regards to hardware cost, memory requirements, energy, and achievable throughput. In this paper, we present the first systematic exploration of this design space as a function of precision for Bidirectional Long Short-Term Memory (BiLSTM) neural network. Specifically, we include an in-depth investigation of precision vs. accuracy using a fully hardware-aware training flow, where during training quantization of all aspects of the network including weights, input, output and in-memory cell activations are taken into consideration. In addition, hardware resource cost, power consumption and throughput scalability are explored as a function of precision for FPGA-based implementations of BiLSTM, and multiple approaches of parallelizing the hardware. We provide the first open source HLS library extension of FINN for parameterizable hardware architectures of LSTM layers on FPGAs which offers full precision flexibility and allows for parameterizable performance scaling offering different levels of parallelism within the architecture. Based on this library, we present an FPGA-based accelerator for BiLSTM neural network designed for optical character recognition, along with numerous other experimental proof points for a Zynq UltraScale+ XCZU7EV MPSoC within the given design space.Comment: Accepted for publication, 28th International Conference on Field Programmable Logic and Applications (FPL), August, 2018, Dublin, Irelan

    Learning Simpler Language Models with the Differential State Framework

    Full text link
    Learning useful information across long time lags is a critical and difficult problem for temporal neural models in tasks such as language modeling. Existing architectures that address the issue are often complex and costly to train. The Differential State Framework (DSF) is a simple and high-performing design that unifies previously introduced gated neural models. DSF models maintain longer-term memory by learning to interpolate between a fast-changing data-driven representation and a slowly changing, implicitly stable state. This requires hardly any more parameters than a classical, simple recurrent network. Within the DSF framework, a new architecture is presented, the Delta-RNN. In language modeling at the word and character levels, the Delta-RNN outperforms popular complex architectures, such as the Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU), and, when regularized, performs comparably to several state-of-the-art baselines. At the subword level, the Delta-RNN's performance is comparable to that of complex gated architectures.Comment: Edits/revisions applied throughout documen
    corecore