24 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Towards low-cost gigabit wireless systems at 60 GHz

    Get PDF
    The world-wide availability of the huge amount of license-free spectral space in the 60 GHz band provides wide room for gigabit-per-second (Gb/s) wireless applications. A commercial (read: low-cost) 60-GHz transceiver will, however, provide limited system performance due to the stringent link budget and the substantial RF imperfections. The work presented in this thesis is intended to support the design of low-cost 60-GHz transceivers for Gb/s transmission over short distances (a few meters). Typical applications are the transfer of high-definition streaming video and high-speed download. The presented work comprises research into the characteristics of typical 60-GHz channels, the evaluation of the transmission quality as well as the development of suitable baseband algorithms. This can be summarized as follows. In the first part, the characteristics of the wave propagation at 60 GHz are charted out by means of channel measurements and ray-tracing simulations for both narrow-beam and omni-directional configurations. Both line-of-sight (LOS) and non-line-of-sight (NLOS) are considered. This study reveals that antennas that produce a narrow beam can be used to boost the received power by tens of dBs when compared with omnidirectional configurations. Meanwhile, the time-domain dispersion of the channel is reduced to the order of nanoseconds, which facilitates Gb/s data transmission over 60-GHz channels considerably. Besides the execution of measurements and simulations, the influence of antenna radiation patterns is analyzed theoretically. It is indicated to what extent the signal-to-noise ratio, Rician-K factor and channel dispersion are improved by application of narrow-beam antennas and to what extent these parameters will be influenced by beam pointing errors. From both experimental and analytical work it can be concluded that the problem of the stringent link-budget can be solved effectively by application of beam-steering techniques. The second part treats wideband transmission methods and relevant baseband algorithms. The considered schemes include orthogonal frequency division multiplexing (OFDM), multi-carrier code division multiple access (MC-CDMA) and single carrier with frequency-domain equalization (SC-FDE), which are promising candidates for Gb/s wireless transmission. In particular, the optimal linear equalization in the frei quency domain and associated implementation issues such as synchronization and channel estimation are examined. Bit error rate (BER) expressions are derived to evaluate the transmission performance. Besides the linear equalization techniques, a low-complexity inter-symbol interference cancellation technique is proposed to achieve much better performance of code-spreading systems such as MC-CDMA and SC-FDE. Both theoretical analysis and simulations demonstrate that the proposed scheme offers great advantages as regards both complexity and performance. This makes it particularly suitable for 60-GHz applications in multipath environments. The third part treats the influence of quantization and RF imperfections on the considered transmission methods in the context of 60-GHz radios. First, expressions for the BER are derived and the influence of nonlinear distortions caused by the digital-to-analog converters, analog-to-digital converters and power amplifiers on the BER performance is examined. Next, the BER performance under the influence of phase noise and IQ imbalance is evaluated for the case that digital compensation techniques are applied in the receiver as well as for the case that such techniques are not applied. Finally, a baseline design of a low-cost Gb/s 60-GHz transceiver is presented. It is shown that, by application of beam-steering in combination with SC-FDE without advanced channel coding, a data rate in the order of 2 Gb/s can be achieved over a distance of 10 meters in a typical NLOS indoor scenario

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Empirical multi-band characterization of propagation with modelling aspects for communictions

    Get PDF
    Diese Arbeit präsentiert eine empirische Untersuchung der Wellenausbreitung für drahtlose Kommunikation im Millimeterwellen- und sub-THz-Band, wobei als Referenz das bereits bekannte und untersuchte sub-6-GHz-Band verwendet wird. Die großen verfügbaren Bandbreiten in diesen hohen Frequenzbändern erlauben die Verwendung hoher instantaner Bandbreiten zur Erfüllung der wesentlichen Anforderungen zukünftiger Mobilfunktechnologien (5G, “5G and beyond” und 6G). Aufgrund zunehmender Pfad- und Eindringverluste bei zunehmender Trägerfrequenz ist die resultierende Abdeckung dabei jedoch stark reduziert. Die entstehenden Pfadverluste können durch die Verwendung hochdirektiver Funkschnittstellen kompensiert werden, wodurch die resultierende Auflösung im Winkelbereich erhöht wird und die Notwendigkeit einer räumlichen Kenntnis der Systeme mit sich bringt: Woher kommt das Signal? Darüber hinaus erhöhen größere Anwendungsbandbreiten die Auflösung im Zeitbereich, reduzieren das small-scale Fading und ermöglichen die Untersuchung innerhalb von Clustern von Mehrwegekomponenten. Daraus ergibt sich für Kommunikationssysteme ein vorhersagbareres Bild im Winkel-, Zeit- und Polarisationsbereich, welches Eigenschaften sind, die in Kanalmodellen für diese Frequenzen widergespiegelt werden müssen. Aus diesem Grund wurde in der vorliegenden Arbeit eine umfassende Charakterisierung der Wellenausbreitung durch simultane Multibandmessungen in den sub-6 GHz-, Millimeterwellen- und sub-THz-Bändern vorgestellt. Zu Beginn wurde die Eignung des simultanen Multiband-Messverfahrens zur Charakterisierung der Ausbreitung von Grenzwert-Leistungsprofilen und large-scale Parametern bewertet. Anschließend wurden wichtige Wellenausbreitungsaspekte für die Ein- und Multibandkanalmodellierung innerhalb mehrerer Säulen der 5G-Technologie identifiziert und Erweiterungen zu verbreiteten räumlichen Kanalmodellen eingeführt und bewertet, welche die oben genannten Systemaspekte abdecken.This thesis presents an empirical characterization of propagation for wireless communications at mm-waves and sub-THz, taking as a reference the already well known and studied sub-6 GHz band. The large blocks of free spectrum available at these high frequency bands makes them particularly suitable to provide the necessary instantaneous bandwidths to meet the requirements of future wireless technologies (5G, 5G and beyond, and 6G). However, isotropic path-loss and penetration-loss are larger with increasing carrier frequency, hence, coverage is severely reduced. Path-loss can be compensated with the utilization of highly directive radio-interfaces, which increases the resolution in the angular domain. Nonetheless, this emphasizes the need of spatial awareness of systems, making more relevant the question “where does the signal come from?” In addition, larger application bandwidths increase the resolution in the time domain, reducing small-scale fading and allowing to observe inside of clusters of multi-path components (MPCs). Consequently, communication systems have a more deterministic picture of the environment in the angular, time, and polarization domain, characteristics that need to be reflected in channel models for these frequencies. Therefore, in the present work we introduce an extensive characterization of propagation by intensive simultaneous multi-band measurements in the sub-6 GHz, mm-waves, and sub-THz bands. Firstly, the suitability of the simultaneous multi-band measurement procedure to characterize propagation from marginal power profiles and large-scale parameters (LSPs) has been evaluated. Then, key propagation aspects for single and multi-band channel modelling in several verticals of 5G have been identified, and extensions to popular spatial channel models (SCMs) covering the aforementioned system aspects have been introduced and evaluated

    Bandwidth Compressed Waveform and System Design for Wireless and Optical Communications: Theory and Practice

    Get PDF
    This thesis addresses theoretical and practical challenges of spectrally efficient frequency division multiplexing (SEFDM) systems in both wireless and optical domains. SEFDM improves spectral efficiency relative to the well-known orthogonal frequency division multiplexing (OFDM) by non-orthogonally multiplexing overlapped sub-carriers. However, the deliberate violation of orthogonality results in inter carrier interference (ICI) and associated detection complexity, thus posing many challenges to practical implementations. This thesis will present solutions for these issues. The thesis commences with the fundamentals by presenting the existing challenges of SEFDM, which are subsequently solved by proposed transceivers. An iterative detection (ID) detector iteratively removes self-created ICI. Following that, a hybrid ID together with fixed sphere decoding (FSD) shows an optimised performance/complexity trade-off. A complexity reduced Block-SEFDM can subdivide the signal detection into several blocks. Finally, a coded Turbo-SEFDM is proved to be an efficient technique that is compatible with the existing mobile standards. The thesis also reports the design and development of wireless and optical practical systems. In the optical domain, given the same spectral efficiency, a low-order modulation scheme is proved to have a better bit error rate (BER) performance when replacing a higher order one. In the wireless domain, an experimental testbed utilizing the LTE-Advanced carrier aggregation (CA) with SEFDM is operated in a realistic radio frequency (RF) environment. Experimental results show that 40% higher data rate can be achieved without extra spectrum occupation. Additionally, a new waveform, termed Nyquist-SEFDM, which compresses bandwidth and suppresses out-of-band power leakage is investigated. A 4th generation (4G) and 5th generation (5G) coexistence experiment is followed to verify its feasibility. Furthermore, a 60 GHz SEFDM testbed is designed and built in a point-to-point indoor fiber wireless experiment showing 67% data rate improvement compared to OFDM. Finally, to meet the requirements of future networks, two simplified SEFDM transceivers are designed together with application scenarios and experimental verifications

    Quasi-deterministic channel modeling and experimental validation in cooperative and massive MIMO deployment topologies

    Get PDF
    Das enorme Wachstum des mobilen Datenaufkommens wird zu substantiellen Veränderungen in mobilen Netzwerken führen. Neue drahtlose Funksysteme müssen alle verfügbaren Freiheitsgrade des Übertragungskanals ausnutzen um die Kapazität zu maximieren. Dies beinhaltet die Nutzung größerer Bandbreiten, getrennter Übertragungskanäle, Antennenarrays, Polarisation und Kooperation zwischen Basisstationen. Dafür benötigt die Funkindustrie Kanalmodelle, welche das wirkliche Verhalten des Übertragungskanals in all diesen Fällen abbilden. Viele aktuelle Kanalmodelle unterstützen jedoch nur einen Teil der benötigten Funktionalität und wurden nicht ausreichend durch Messungen in relevanten Ausbreitungsszenarien validiert. Es ist somit unklar, ob die Kapazitätsvorhersagen, welche mit diesen Modellen gemacht werden, realistisch sind. In der vorliegenden Arbeit wird ein neuen Kanalmodell eingeführt, welches korrekte Ergebnisse für zwei wichtige Anwendungsfälle erzeugt: Massive MIMO und Joint-Transmission (JT) Coordinated Multi-Point (CoMP). Dafür wurde das häufig verwendete WINNER Kanalmodell um neue Funktionen erweitert. Dazu zählen 3-D Ausbreitungseffekte, sphärische Wellenausbreitung, räumliche Konsistenz, die zeitliche Entwicklung von Kanälen sowie ein neues Modell für die Polarisation. Das neue Kanalmodell wurde unter dem Akronym "QuaDRiGa" (Quasi Deterministic Radio Channel Generator, dt.: quasideterministischer Funkkanalgenerator) eingeführt. Um das Modell zu validieren wurden Messungen in Dresden und Berlin durchgeführt. Die Messdaten wurden zunächst verwendet um die Modellparameter abzuleiten. Danach wurden die Messkampagnen im Modell nachgestellt um die Reproduzierbarkeit der Ergebnisse nachzuweisen. Essentielle Leistungsindikatoren wie z.B. der Pfadverlust, die Laufzeitstreuung, die Winkelstreuung, der Geometriefaktor, die MIMO Kapazität und die Dirty-Paper-Coding Kapazität wurden für beide Datensätze berechnet. Diese wurden dann miteinander sowie mit Ergebnissen aus dem Rayleigh i.i.d. Modell und dem 3GPP-3D Kanalmodell verglichen. Für die Messungen in Dresden erzeugt das neue Modell nahezu identische Ergebnisse wenn die nachsimulierten Kanäle anstatt der Messdaten für die Bestimmung der Modellparameter verwendet werden. Solch ein direkter Vergleich war bisher nicht möglich, da die vorherigen Modelle keine ausreichend langen Kanalsequenzen erzeugen können. Die Kapazitätsvorhersagen des neuen Modells sind zu über 90% korrekt. Im Vergleich dazu konnte das 3GPP-3D Model nur etwa 80% Genauigkeit aufweisen. Diese Vorhersagen konnten auch für das Messszenario in Berlin gemacht werden, wo mehrere Basisstationen zeitgleich vermessen wurden. Dadurch konnten die gegenseitigen Störungen mit in die Bewertung eingeschlossen werden. Die Ergebnisse bestätigen die generelle Annahme, dass es möglich ist den Ausbreitungskanal sequenziell für einzelne Basisstationen zu vermessen und danach Kapazitätsvorhersagen für ganze Netzwerke mit der Hilfe von Modellen zu machen. Das neue Modell erzeugt Kanalkoeffizienten welche ähnliche Eigenschaften wie Messdaten haben. Somit können neue Algorithmen in Funksystemen schneller bewertet werden, da es nun möglich ist realistische Ergebnisse in einem frühen Entwicklungsstadium zu erhalten.The tremendous growth of mobile data traffic will lead to substantial architectural changes in wireless networks. New wireless systems need to exploit all available degrees of freedom in the wireless channel such as wider bandwidth, multi-carrier operation, large antenna arrays, polarization, and cooperation between base stations, in order to maximize the performance. The wireless industry needs channel models that reproduce the true behavior of the radio channel in all these use cases. However, many state-of-the-art models only support parts of the required functionality and have not been thoroughly validated against measurements in relevant propagations scenarios. It is therefore unclear if the performance predictions made by these models are realistic. This thesis introduces a new geometry-based stochastic channel model that creates accurate results for two important use cases: massive multiple-input multiple-output (MIMO) and joint transmission (JT) coordinated multi-point (CoMP). For this, the popular WINNER channel model was extended to incorporate 3-D propagation, spherical wave propagation, spatial consistency, temporal evolution of channels, and a new model for the polarization. This model was introduced under the acronym ``QuaDRiGa'' - quasi deterministic radio channel generator. To validate the model, measurements were done in downtown Dresden, Germany, and downtown Berlin, Germany. Those were used to derive the model parameters. Then, the measurements were resimulated with the new channel model and benchmarked against the Rayleigh i.i.d. model and the 3GPP-3D channel model. Essential performance indicators such as path gain, shadow fading, delay spread, angular spreads, geometry factor, single-link capacity, and the dirty-paper coding capacity were computed from both the measured and resimulated data. In Dresden, the resimulated channels produce almost identical results as the measured channels. When using the resimulated channels to derive the model parameters, the same results can be obtained as when using the measurement data. Such a direct comparison was not possible with the previous models because they cannot produce sufficiently long sequences of channel data. The performance predictions from the new model are more than 90% accurate whereas only 80% accuracy could be achieved with the 3GPP-3D model. In Berlin, accurate performance predictions could also be made in a multi-cellular environment where the mutual interference between the base stations could be studied. This confirms that it is generally sufficient to use single-link measurements to parameterize channel models that are then used to predict the achievable performance in wireless networks. The new model can generate channel traces with similar characteristics as measured data. This might speed up the evaluation of new algorithms because it is now possible to obtain realistic performance results already in an early stage of development
    corecore