8,862 research outputs found

    Multi-service Signal Multiplexing and Isolation for Physical-Layer Network Slicing (PNS)

    Get PDF
    Network slicing has been identified as one of the most important features for 5G and beyond to enable operators to utilize networks on an as-a-service basis and meet the wide range of use cases. In physical layer, the frequency and time resources are split into slices to cater for the services with individual optimal designs, resulting in services/slices having different baseband numerologies (e.g., subcarrier spacing) and / or radio frequency (RF) front-end configurations. In such a system, the multi-service signal multiplexing and isolation among the service/slices are critical for the Physical-Layer Network Slicing (PNS) since orthogonality is destroyed and significant inter-service/ slice-band-interference (ISBI) may be generated. In this paper, we first categorize four PNS cases according to the baseband and RF configurations among the slices. The system model is established by considering a low out of band emission (OoBE) waveform operating in the service/slice frequency band to mitigate the ISBI. The desired signal and interference for the two slices are derived. Consequently, one-tap channel equalization algorithms are proposed based on the derived model. The developed system models establish a framework for further interference analysis, ISBI cancelation algorithms, system design and parameter selection (e.g., guard band), to enable spectrum efficient network slicing

    An Efficient Resource Management Mechanism for Network Slicing in LTE Network

    Get PDF
    The proliferation of mobile devices and user applications has continued to contribute to the humongous volume of data traffic in cellular networks. To surmount this challenge, service and resource providers are looking for alternative mechanisms that can successfully facilitate managing network resources in a more dynamic, predictive and distributed manner. New concepts of network architectures such as Software Defined Network (SDN) and Network Function Virtualization (NFV) have paved the way to move from static to flexible networks. They make networks more flexible (i.e. network providers capable of on-demand provisioning), easily customizable and cost effective. In this regard, network slicing is emerging as a new technology built on the concepts of SDN and NFV. It splits a network infrastructure into isolated virtual networks and allows them to manage resources allocation individually based on their requirements and characteristics. Most of the existing solutions for network slicing are computationally expensive because of the length of time they require to estimate the resources required for each isolated slice. In addition, there is no guarantee that the resource allocation is fairly shared among users in a slice. In this paper, we propose a Network Slicing Resource Management (NSRM) mechanism to assign the required resources for each slice in an LTE network, taking into consideration resources isolation between different slices. In addition, NSRM aims to ensure isolation and fair sharing of distributed bandwidths between users belonging to the same slice. In NSRM, depending on requirements, each slice can be customized (e.g. each can have a different scheduling policy)
    • …
    corecore