358 research outputs found

    Inter Carrier Interference Cancellation in OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. A well-known problem of OFDM is its sensitivity to frequency offset between the transmitted and received carrier frequencies. This frequency offset introduces inter-carrier interference (ICI) in the OFDM symbol. This project investigates two methods for combating the effects of ICI: ICI self-cancellation (SC), and extended Kalman filter (EKF) method. These two methods are compared in terms of bit error rate performance, bandwidth efficiency, and computational complexity. Through simulations, it is shown that the two techniques are effective in mitigating the effects of ICI. For high values of the frequency offset and for higher order modulation schemes, EKF method performs better than the SC method

    Inter carrier interference cancellation in OFDM systems

    Get PDF
    In the area of wireless communications, the demand for high data rate transmission is rapidly increasing. Orthogonal frequency division multiplexing (OFDM) is known to be a promising technique for high-rate transmission that can overcome the inter symbol interference (ISI) which results from the time dispersive nature of wireless channels. For OFDM communication systems the orthogonality is lost among the sub-carriers due to frequency offset which results in Inter carrier Interference (ICI). This ICI rapidly degrades the performance of OFDM system. We have so many ICI cancellation methods like time windowing and frequency equalization to improve the BER performance of OFDM systems. In this an efficient ICI cancellation methods termed ICI self-cancellation (SC) scheme, extended Kalman filter (EKF) method and another ICI cancellation scheme, named Total ICI Cancellation scheme are proposed. However the total ICI cancellation scheme has does not lower the transmission rate or reduce the bandwidth efficiency. It is shown that for high values of the frequency offset and for higher order modulation schemes, the EKF method perform better than the SC method. The Total ICI Cancellation scheme takes advantage of the orthogonality of the ICI matrix and offers perfect ICI cancellation and significant BER improvement at linearly growing cost. Simulation results in AWGN channel confirm the superb performance of the Total ICI Cancellation scheme in the presence of frequency offset or time variations in the channel compared with other two schemes

    Techniques d’Estimation de Canal et de Décalage de Fréquence Porteuse pour Systèmes Sans-fil Multiporteuses en Liaison Montante

    Get PDF
    Multicarrier modulation is the common feature of high-data rate mobile wireless systems. In that case, two phenomena disturb the symbol detection. Firstly, due to the relative transmitter-receiver motion and a difference between the local oscillator (LO) frequency at the transmitter and the receiver, a carrier frequency offset (CFO) affects the received signal. This leads to an intercarrier interference (ICI). Secondly, several versions of the transmitted signal are received due to the wireless propagation channel. These unwanted phenomena must be taken into account when designing a receiver. As estimating the multipath channel and the CFO is essential, this PhD deals with several CFO and channel estimation methods based on optimal filtering. Firstly, as the estimation issue is nonlinear, we suggest using the extended Kalman filter (EKF). It is based on a local linearization of the equations around the last state estimate. However, this approach requires a linearization based on calculations of Jacobians and Hessians matrices and may not be a sufficient description of the nonlinearity. For these reasons, we can consider the sigma-point Kalman filter (SPKF), namely the unscented Kalman Filter (UKF) and the central difference Kalman filter (CDKF). The UKF is based on the unscented transformation whereas the CDKF is based on the second order Sterling polynomial interpolation formula. Nevertheless, the above methods require an exact and accurate a priori system model as well as perfect knowledge of the additive measurementnoise statistics. Therefore, we propose to use the H∞ filtering, which is known to be more robust to uncertainties than Kalman filtering. As the state-space representation of the system is non-linear, we first evaluate the “extended H∞ filter”, which is based on a linearization of the state-space equations like the EKF. As an alternative, the “unscented H∞ filter”, which has been recently proposed in the literature, is implemented by embedding the unscented transformation into the “extended H∞ filter” and carrying out the filtering by using the statistical linear error propagation approach.Multicarrier modulation is the common feature of high-data rate mobile wireless systems. In that case, two phenomena disturb the symbol detection. Firstly, due to the relative transmitter-receiver motion and a difference between the local oscillator (LO) frequency at the transmitter and the receiver, a carrier frequency offset (CFO) affects the received signal. This leads to an intercarrier interference (ICI). Secondly, several versions of the transmitted signal are received due to the wireless propagation channel. These unwanted phenomena must be taken into account when designing a receiver. As estimating the multipath channel and the CFO is essential, this PhD deals with several CFO and channel estimation methods based on optimal filtering. Firstly, as the estimation issue is nonlinear, we suggest using the extended Kalman filter (EKF). It is based on a local linearization of the equations around the last state estimate. However, this approach requires a linearization based on calculations of Jacobians and Hessians matrices and may not be a sufficient description of the nonlinearity. For these reasons, we can consider the sigma-point Kalman filter (SPKF), namely the unscented Kalman Filter (UKF) and the central difference Kalman filter (CDKF). The UKF is based on the unscented transformation whereas the CDKF is based on the second order Sterling polynomial interpolation formula. Nevertheless, the above methods require an exact and accurate a priori system model as well as perfect knowledge of the additive measurementnoise statistics. Therefore, we propose to use the H∞ filtering, which is known to be more robust to uncertainties than Kalman filtering. As the state-space representation of the system is non-linear, we first evaluate the “extended H∞ filter”, which is based on a linearization of the state-space equations like the EKF. As an alternative, the “unscented H∞ filter”, which has been recently proposed in the literature, is implemented by embedding the unscented transformation into the “extended H∞ filter” and carrying out the filtering by using the statistical linear error propagation approach

    Complex Amplitudes Tracking Loop for multipath channel estimation in OFDM systems over slow to moderate fading

    No full text
    International audienceThis paper deals with multipath channel estimation for Orthogonal Frequency-Division Multiplexing systems under slow to moderate fading conditions. Most of the conventionalmethods exploit only the frequency-domain correlation by estimating the channel at pilot frequencies, and then interpolating the channel frequency response. More advanced algorithms exploit in addition the time-domain correlation, by employing Kalman filters based on the approximation of the time-varying channel. Adopting a parametric approach and assuming a primary acquisition of the path delays, channel estimators have to track the complex amplitudes of the paths. In this perspective, we propose a less complex algorithm than the Kalman methods, inspired by second-order Phase-Locked Loops. An error signal is created from the pilot-aided Least-Squares estimates of the complex amplitudes, and is integrated by the loop to carry out the final estimates. We derive closed-form expressions of the mean squared error of the algorithm and of the optimal loop coefficients versus the channel state, assuming a Rayleigh channel with Jakes'Doppler spectrum. The efficiency of our reduced complexity algorithm is demonstrated, with an asymptotic mean squared error lower than the first-order auto-regressive Kalman filters reported in the literature, and almost the same as a second-order Kalman-based algorithm

    Advanced receiver structures for mobile MIMO multicarrier communication systems

    Get PDF
    Beyond third generation (3G) and fourth generation (4G) wireless communication systems are targeting far higher data rates, spectral efficiency and mobility requirements than existing 3G networks. By using multiple antennas at the transmitter and the receiver, multiple-input multiple-output (MIMO) technology allows improving both the spectral efficiency (bits/s/Hz), the coverage, and link reliability of the system. Multicarrier modulation such as orthogonal frequency division multiplexing (OFDM) is a powerful technique to handle impairments specific to the wireless radio channel. The combination of multicarrier modulation together with MIMO signaling provides a feasible physical layer technology for future beyond 3G and fourth generation communication systems. The theoretical benefits of MIMO and multicarrier modulation may not be fully achieved because the wireless transmission channels are time and frequency selective. Also, high data rates call for a large bandwidth and high carrier frequencies. As a result, an important Doppler spread is likely to be experienced, leading to variations of the channel over very short period of time. At the same time, transceiver front-end imperfections, mobility and rich scattering environments cause frequency synchronization errors. Unlike their single-carrier counterparts, multi-carrier transmissions are extremely sensitive to carrier frequency offsets (CFO). Therefore, reliable channel estimation and frequency synchronization are necessary to obtain the benefits of MIMO OFDM in mobile systems. These two topics are the main research problems in this thesis. An algorithm for the joint estimation and tracking of channel and CFO parameters in MIMO OFDM is developed in this thesis. A specific state-space model is introduced for MIMO OFDM systems impaired by multiple carrier frequency offsets under time-frequency selective fading. In MIMO systems, multiple frequency offsets are justified by mobility, rich scattering environment and large angle spread, as well as potentially separate radio frequency - intermediate frequency chains. An extended Kalman filter stage tracks channel and CFO parameters. Tracking takes place in time domain, which ensures reduced computational complexity, robustness to estimation errors as well as low estimation variance in comparison to frequency domain processing. The thesis also addresses the problem of blind carrier frequency synchronization in OFDM. Blind techniques exploit statistical or structural properties of the OFDM modulation. Two novel approaches are proposed for blind fine CFO estimation. The first one aims at restoring the orthogonality of the OFDM transmission by exploiting the properties of the received signal covariance matrix. The second approach is a subspace algorithm exploiting the correlation of the channel frequency response among the subcarriers. Both methods achieve reliable estimation of the CFO regardless of multipath fading. The subspace algorithm needs extremely small sample support, which is a key feature in the face of time-selective channels. Finally, the Cramér-Rao (CRB) bound is established for the problem in order to assess the large sample performance of the proposed algorithms.reviewe

    High-Resolution Indoor Sensing Using Channel State Information of WiFi Networks

    Get PDF
    Indoor sensing is becoming increasingly important over time as it can be effectively utilized in many applications from digital health care systems to indoor safety and security systems. In particular, implementing sensing operations using existing infrastructures improves our experience and well-being, and exhibits unique advantages. The physical layer channel state information for wireless fidelity (WiFi) communications carries rich information about scatters in the propagation environment; hence, we exploited this information to enable detailed recognition of human behaviours in this study. Comprehensive calibration and filtering techniques were developed to alleviate the redundant responses embedded in the channel state information (CSI) data due to static objects and accidental events. Accurate information on breathing rate, heartbeat and angle of arrival of the incoming signal at the receiver side was inferred from the available CSI data. The method and procedure developed can be extended for sensing or imaging the environment utilizing wireless communication networks

    Automatic transmit power control for power efficient communications in UAS

    Get PDF
    Nowadays, unmanned aerial vehicles (UAV) have become one of the most popular tools that can be used in commercial, scientific, agricultural and military applications. As drones become faster, smaller and cheaper, with the ability to add payloads, the usage of the drone can be versatile. In most of the cases, unmanned aerials systems (UAS) are equipped with a wireless communication system to establish a link with the ground control station to transfer the control commands, video stream, and payload data. However, with the limited onboard calculation resources in the UAS, and the growing size and volume of the payload data, computational complex signal processing such as deep learning cannot be easily done on the drone. Hence, in many drone applications, the UAS is just a tool for capturing and storing data, and then the data is post-processed off-line in a more powerful computing device. The other solution is to stream payload data to the ground control station (GCS) and let the powerful computer on the ground station to handle these data in real-time. With the development of communication techniques such as orthogonal frequency-division multiplexing (OFDM) and multiple-input multiple-output (MIMO) transmissions, it is possible to increase the spectral efficiency over large bandwidths and consequently achieve high transmission rates. However, the drone and the communication system are usually being designed separately, which means that regardless of the situation of the drone, the communication system is working independently to provide the data link. Consequently, by taking into account the position of the drone, the communication system has some room to optimize the link budget efficiency. In this master thesis, a power-efficient wireless communication downlink for UAS has been designed. It is achieved by developing an automatic transmit power control system and a custom OFDM communication system. The work has been divided into three parts: research of the drone communication system, an optimized communication system design and finally, FPGA implementation. In the first part, an overview on commercial drone communication schemes is presented and discussed. The advantages and disadvantages shown are the source of inspiration for improvement. With these ideas, an optimized scheme is presented. In the second part, an automatic transmit power control system for UAV wireless communication and a power-efficient OFDM downlink scheme are proposed. The automatic transmit power control system can estimate the required power level by the relative position between the drone and the GCS and then inform the system to adjust the power amplifier (PA) gain and power supply settings. To obtain high power efficiency for different output power levels, a searching strategy has been applied to the PA testbed to find out the best voltage supply and gain configurations. Besides, the OFDM signal generation developed in Python can encode data bytes to the baseband signal for testing purpose. Digital predistortion (DPD) linearization has been included in the transmitter’s design to guarantee the signal linearity. In the third part, two core algorithms: IFFT and LUT-based DPD, have been implemented in the FPGA platform to meet the real-time and high-speed I/O requirements. By using the high-level synthesis design process provided by Xilinx Corp, the algorithms are implemented as reusable IP blocks. The conclusion of the project is given in the end, including the summary of the proposed drone communication system and envisioning possible future lines of research

    Huber Kalman Filter for Wi-Fi based Vehicle Driver\u27s Respiration Detection

    Get PDF
    The use of breath detection in vehicles can reduce the number of vehicular accidents caused by drivers in poor physical condition. Prior studies of contactless respiration detection mainly targeted a static person. However, there are emerging applications to sense a driver, with emphasis on contactless methods. For example, being able to detect a driver\u27s respiration while driving by using a vehicular Wi-Fi system can significantly enhance driving safety. The sensing system can be mounted on the back of the driver\u27s seat, and it can sense the tiny chest displacement of the driver via Wi-Fi signals. The body displacement and car vibrations could introduce significant noise in the sensed signal. The noise then needs to be filtered to obtain the driver\u27s respiration. In this work, the noise in the sensed signal is proposed to be reduced using a Huber Kalman filter to restore the original respiration curve. Through several experiments in terms of different drivers, different car models, multiple passengers, and abnormal breathing, we demonstrate the accuracy and robustness of the Huber Kalman filter in driver\u27s respiration
    corecore