368 research outputs found

    Capacity Constrained Routing Algorithms for Evacuation Route Planning

    Get PDF
    Efficient tools are needed to identify routes and schedules to evacuate affected populations to safety in face of natural disasters or terrorist attacks. Challenges arise due to violation of key assumptions (e.g. stationary ranking of alternative routes, Wardrop equilibrium) behind popular shortest path algorithms (e.g. Dijktra\u27s, A*) and microscopic traffic simulators (e.g. DYNASMART). Time-expanded graphs (TEG) based mathematical programming paradigm does not scale up to large urban scenarios due to excessive duplication of transportation network across time-points. We present a new approach, namely Capacity Constrained Route Planner (CCRP), advancing ideas such as Time-Aggregated Graph (TAG) and an ATST function to provide earliest-Arrival-Time given any Start-Time. Laboratory experiments and field use in Twincities for DHS scenarios (e.g. Nuclear power plant, terrorism) show that CCRP is much faster than the state of the art. A key Transportation Science insight suggests that walking the first mile, when appropriate, may speed-up evacuation by a factor of 2 to 3 for many scenarios. Geographic Information Science (e.g. Time Geography) contributions include a novel representation (e.g. TAG) for spatio-temporal networks. Computer Science contributions include graph theory limitations (e.g. non-stationary ranking of routes, non-FIFO behavior) and scalable algorithms for traditional routing problems in time-varying networks, as well as new problems such as identifying the best start-time (for a given arrival-time deadline) to minimize travel-time

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Integration of micro- and macroscopic models for pedestrian evacuation simulation

    Get PDF
    Simulation of pedestrian evacuations of smart buildings in emergency is a powerful tool for building analysis, dynamic evacuation planning and real-time response to the evolving state of evacuations. Macroscopic pedestrian models are low-complexity models that are and well suited to algorithmic analysis and planning, but are quite abstract. Microscopic simulation models allow for a high level of simulation detail but can be computationally intensive. By combining micro- and macro- models we can use each to overcome the shortcomings of the other and enable new capability and applications for pedestrian evacuation simulation that would not be possible with either alone. We develop the EvacSim multi-agent pedestrian simulator and procedurally generate macroscopic flow graph models of building space, integrating micro- and macroscopic approaches to simulation of the same emergency space. By “coupling” flow graph parameters to microscopic simulation results, the graph model captures some of the higher detail and fidelity of the complex microscopic simulation model. The coupled flow graph is used for analysis and prediction of the movement of pedestrians in the microscopic simulation, and investigate the performance of dynamic evacuation planning in simulated emergencies using a variety of strategies for allocation of macroscopic evacuation routes to microscopic pedestrian agents. The predictive capability of the coupled flow graph is exploited for the decomposition of microscopic simulation space into multiple future states in a scalable manner. By simulating multiple future states of the emergency in short time frames, this enables sensing strategy based on simulation scenario pattern matching which we show to achieve fast scenario matching, enabling rich, real-time feedback in emergencies in buildings with meagre sensing capabilities

    DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS

    Get PDF
    In most metropolitan areas, an emergency evacuation may demand a potentially large number of evacuees to use transit systems or to walk over some distance to access their passenger cars. In the process of approaching designated pick-up points for evacuation, the massive number of pedestrians often incurs tremendous burden to vehicles in the roadway network. Hence, one critical issue in a multi-modal evacuation planning is the effective coordination of the vehicle and pedestrian flows by considering their complex interactions. The purpose of this research is to develop an integrated system that is capable of generating the optimal evacuation plan and reflecting the real-world network traffic conditions caused by the conflicts of these two types of flows. The first part of this research is an integer programming model designed to optimize the control plans for massive mixed pedestrian-vehicle flows within the evacuation zone. The proposed model, integrating the pedestrian and vehicle networks, can effectively account for their potential conflicts during the evacuation. The model can generate the optimal routing strategies to guide evacuees moving toward either their pick-up locations or parking areas and can also produce a responsive plan to accommodate the massive pedestrian movements. The second part of this research is a mixed-flow simulation tool that can capture the conflicts between pedestrians, between vehicles, and between pedestrians and vehicles in an evacuation network. The core logic of this simulation model is the Mixed-Cellular Automata (MCA) concept, which, with some embedded components, offers a realistic mechanism to reflect the competing and conflicting interactions between vehicle and pedestrian flows. This study is expected to yield the following contributions * Design of an effective framework for planning a multi-modal evacuation within metropolitan areas; * Development of an integrated mixed-flow optimization model that can overcome various modeling and computing difficulties in capturing the mixed-flow dynamics in urban network evacuation; * Construction and calibration of a new mixed-flow simulation model, based on the Cellular Automaton concept, to reflect various conflicting patterns between vehicle and pedestrian flows in an evacuation network

    Road network recovery from concurrent capacity-reducing incidents : model development and optimisation

    Get PDF
    Local and regional economies are highly dependent on the road network. The concurrent closure of multiple sections of the network following a hazardous event is likely to have significant negative consequences for those using the network. In situations such as these, infrastructure managers must decide how best to restore the network to protect users, maximise connectivity and minimise overall disruption. Furthermore, many hazardous events are forecast to become more frequent and extreme in the future as a result of climate change. Extensive research has been undertaken to understand how to improve the resilience of degraded transport networks. Whilst network robustness (that is, the ability of a network to withstand stress) has been considered in numerous studies, the recovery of the network has captured less attention among researchers. Methodologies developed to date are overly simplistic, especially when simulating the dynamics of traffic demand and drivers’ decision-making in multi-day situations where there is considerable interplay between actual and perceived network states and behaviour. This thesis presents a decision-support tool that optimises the recovery of road transport networks after major day-to-day disruptions, maximising network connectivity and minimising total travel costs. This work expands upon previous efforts by introducing a new approach that models the damage-capacity-time relationship and improves the existing reinforcement-learning traffic-assignment models to be applicable to disrupted scenarios. An efficient metaheuristic approach (NSGA-II) is proposed to find optimal solutions for the recovery problem. The model is also applied to a real-world scenario based on the Scottish road network. Results from this case study clearly highlight the potential applicability of this model to evaluate different recovery strategies and optimise the recovery of road networks after multi-day major disruptions.Local and regional economies are highly dependent on the road network. The concurrent closure of multiple sections of the network following a hazardous event is likely to have significant negative consequences for those using the network. In situations such as these, infrastructure managers must decide how best to restore the network to protect users, maximise connectivity and minimise overall disruption. Furthermore, many hazardous events are forecast to become more frequent and extreme in the future as a result of climate change. Extensive research has been undertaken to understand how to improve the resilience of degraded transport networks. Whilst network robustness (that is, the ability of a network to withstand stress) has been considered in numerous studies, the recovery of the network has captured less attention among researchers. Methodologies developed to date are overly simplistic, especially when simulating the dynamics of traffic demand and drivers’ decision-making in multi-day situations where there is considerable interplay between actual and perceived network states and behaviour. This thesis presents a decision-support tool that optimises the recovery of road transport networks after major day-to-day disruptions, maximising network connectivity and minimising total travel costs. This work expands upon previous efforts by introducing a new approach that models the damage-capacity-time relationship and improves the existing reinforcement-learning traffic-assignment models to be applicable to disrupted scenarios. An efficient metaheuristic approach (NSGA-II) is proposed to find optimal solutions for the recovery problem. The model is also applied to a real-world scenario based on the Scottish road network. Results from this case study clearly highlight the potential applicability of this model to evaluate different recovery strategies and optimise the recovery of road networks after multi-day major disruptions

    Building Evacuation with Mobile Devices

    Get PDF
    In der Dissertation wird ein Konzept für ein Gebäudeevakuierungssystem vorgestellt, das es ermöglicht, Personen mit Hilfe mobiler Endgeräte im Evakuierungsfall aus einem Gebäude zu führen. Die Dissertation gliedert sich in drei thematische Bereiche, in denen zunächst ein Konzept für die Systemarchitektur vorgestellt wird und anschließend verschiedene Algorithmen zur Routenplanung sowie zur Lokalisierung der Geräte vorgestellt und evaluiert werden

    e-Sanctuary: open multi-physics framework for modelling wildfire urban evacuation

    Get PDF
    The number of evacuees worldwide during wildfire keep rising, year after year. Fire evacuations at the wildland-urban interfaces (WUI) pose a serious challenge to fire and emergency services and are a global issue affecting thousands of communities around the world. But to date, there is a lack of comprehensive tools able to inform, train or aid the evacuation response and the decision making in case of wildfire. The present work describes a novel framework for modelling wildfire urban evacuations. The framework is based on multi-physics simulations that can quantify the evacuation performance. The work argues that an integrated approached requires considering and integrating all three important components of WUI evacuation, namely: fire spread, pedestrian movement, and traffic movement. The report includes a systematic review of each model component, and the key features needed for the integration into a comprehensive toolkit
    • …
    corecore