40,515 research outputs found

    Intelligent Association Exploration and Exploitation of Fuzzy Agents in Ambient Intelligent Environments

    Get PDF
    This paper presents a novel fuzzy-based intelligent architecture that aims to find relevant and important associations between embedded-agent based services that form Ambient Intelligent Environments (AIEs). The embedded agents are used in two ways; first they monitor the inhabitants of the AIE, learning their behaviours in an online, non-intrusive and life-long fashion with the aim of pre-emptively setting the environment to the users preferred state. Secondly, they evaluate the relevance and significance of the associations to various services with the aim of eliminating redundant associations in order to minimize the agent computational latency within the AIE. The embedded agents employ fuzzy-logic due to its robustness to the uncertainties, noise and imprecision encountered in AIEs. We describe unique real world experiments that were conducted in the Essex intelligent Dormitory (iDorm) to evaluate and validate the significance of the proposed architecture and methods

    Set-Based Pre-Processing for Points-To Analysis

    Get PDF
    We present set-based pre-analysis: a virtually universal op- timization technique for flow-insensitive points-to analysis. Points-to analysis computes a static abstraction of how ob- ject values flow through a program’s variables. Set-based pre-analysis relies on the observation that much of this rea- soning can take place at the set level rather than the value level. Computing constraints at the set level results in sig- nificant optimization opportunities: we can rewrite the in- put program into a simplified form with the same essential points-to properties. This rewrite results in removing both local variables and instructions, thus simplifying the sub- sequent value-based points-to computation. E ectively, set- based pre-analysis puts the program in a normal form opti- mized for points-to analysis. Compared to other techniques for o -line optimization of points-to analyses in the literature, the new elements of our approach are the ability to eliminate statements, and not just variables, as well as its modularity: set-based pre-analysis can be performed on the input just once, e.g., allowing the pre-optimization of libraries that are subsequently reused many times and for di erent analyses. In experiments with Java programs, set-based pre-analysis eliminates 30% of the program’s local variables and 30% or more of computed context-sensitive points-to facts, over a wide set of bench- marks and analyses, resulting in a 20% average speedup (max: 110%, median: 18%)

    Feature subset selection: a correlation based filter approach

    Get PDF
    Recent work has shown that feature subset selection can have a position affect on the performance of machine learning algorithms. Some algorithms can be slowed or their performance adversely affected by too much data some of which may be irrelevant or redundant to the learning task. Feature subset selection, then, is a method of enhancing the performance of learning algorithms, reducing the hypothesis search space, and, in some cases, reducing the storage requirement. This paper describes a feature subset selector that uses a correlation based heuristic to determine the goodness of feature subsets, and evaluates its effectiveness with three common ML algorithms: a decision tree inducer (C4.5), a naive Bayes classifier, and an instance based learner(IBI). Experiments using a number of standard data sets drawn from real and artificial domains are presented. Feature subset selection gave significant improvement for all three algorithms; C4.5 generated smaller decision trees

    Improving Prolog programs: Refactoring for Prolog

    Full text link
    Refactoring is an established technique from the object-oriented (OO) programming community to restructure code: it aims at improving software readability, maintainability and extensibility. Although refactoring is not tied to the OO-paradigm in particular, its ideas have not been applied to Logic Programming until now. This paper applies the ideas of refactoring to Prolog programs. A catalogue is presented listing refactorings classified according to scope. Some of the refactorings have been adapted from the OO-paradigm, while others have been specifically designed for Prolog. The discrepancy between intended and operational semantics in Prolog is also addressed by some of the refactorings. In addition, ViPReSS, a semi-automatic refactoring browser, is discussed and the experience with applying ViPReSS to a large Prolog legacy system is reported. The main conclusion is that refactoring is both a viable technique in Prolog and a rather desirable one.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    BruteSuppression: a size reduction method for Apriori rule sets

    Get PDF
    corecore