20 research outputs found

    Effective Differential Nullstellensatz for Ordinary DAE Systems with Constant Coefficients

    Full text link
    We give upper bounds for the differential Nullstellensatz in the case of ordinary systems of differential algebraic equations over any field of constants KK of characteristic 00. Let x\vec{x} be a set of nn differential variables, f\vec{f} a finite family of differential polynomials in the ring K{x}K\{\vec{x}\} and fK{x}f\in K\{\vec{x}\} another polynomial which vanishes at every solution of the differential equation system f=0\vec{f}=0 in any differentially closed field containing KK. Let d:=max{deg(f),deg(f)}d:=\max\{\deg(\vec{f}), \deg(f)\} and ϵ:=max{2,ord(f),ord(f)}\epsilon:=\max\{2,{\rm{ord}}(\vec{f}), {\rm{ord}}(f)\}. We show that fMf^M belongs to the algebraic ideal generated by the successive derivatives of f\vec{f} of order at most L=(nϵd)2c(nϵ)3L = (n\epsilon d)^{2^{c(n\epsilon)^3}}, for a suitable universal constant c>0c>0, and M=dn(ϵ+L+1)M=d^{n(\epsilon +L+1)}. The previously known bounds for LL and MM are not elementary recursive

    On the Index and the Order of Quasi-regular Implicit Systems of Differential Equations

    Get PDF
    This paper is mainly devoted to the study of the differentiation index and the order for quasi-regular implicit ordinary differential algebraic equation (DAE) systems. We give an algebraic definition of the differentiation index and prove a Jacobi-type upper bound for the sum of the order and the differentiation index. Our techniques also enable us to obtain an alternative proof of a combinatorial bound proposed by Jacobi for the order. As a consequence of our approach we deduce an upper bound for the Hilbert-Kolchin regularity and an effective ideal membership test for quasi-regular implicit systems. Finally, we prove a theorem of existence and uniqueness of solutions for implicit differential systems

    Elimination for Systems of Algebraic Differential Equations

    Full text link
    We develop new upper bounds for several effective differential elimination techniques for systems of algebraic ordinary and partial differential equations. Differential elimination, also known as decoupling, is the process of eliminating a fixed subset of unknown functions from a system of differential equations in order to obtain differential algebraic consequences of the original system that do not depend on that fixed subset of unknowns. A special case of differential elimination, which we study extensively, is the question of consistency, that is, if the given system of differential equations has a solution. We first look solely at the ``algebraic data of the system of differential equations through the theory of differential kernels to provide a new upper bound for proving the consistency of the system. We then prove a new upper bound for the effective differential Nullstellensatz, which determines a sufficient number of times to differentiate the original system in order to prove its inconsistency. Finally, we study the Rosenfeld-Gröbner algorithm, which approaches differential elimination by decomposing the given system of differential equations into simpler systems. We analyze the complexity of the Rosenfeld-Gröbner algorithm by computing an upper bound for the orders of the derivatives in all intermediate steps and in the output of the algorithm

    Computing representations for radicals of finitely generated differential ideals

    Get PDF
    International audienceThis paper deals with systems of polynomial di erential equations, ordinary or with partial derivatives. The embedding theory is the di erential algebra of Ritt and Kolchin. We describe an algorithm, named Rosenfeld-Gröbner, which computes a representation for the radical p of the diff erential ideal generated by any such sys- tem . The computed representation constitutes a normal simpli er for the equivalence relation modulo p (it permits to test embership in p). It permits also to compute Taylor expansions of solutions of . The algorithm is implemented within a package in MAPLE
    corecore