61 research outputs found

    O-Minimal Hybrid Reachability Games

    Full text link
    In this paper, we consider reachability games over general hybrid systems, and distinguish between two possible observation frameworks for those games: either the precise dynamics of the system is seen by the players (this is the perfect observation framework), or only the starting point and the delays are known by the players (this is the partial observation framework). In the first more classical framework, we show that time-abstract bisimulation is not adequate for solving this problem, although it is sufficient in the case of timed automata . That is why we consider an other equivalence, namely the suffix equivalence based on the encoding of trajectories through words. We show that this suffix equivalence is in general a correct abstraction for games. We apply this result to o-minimal hybrid systems, and get decidability and computability results in this framework. For the second framework which assumes a partial observation of the dynamics of the system, we propose another abstraction, called the superword encoding, which is suitable to solve the games under that assumption. In that framework, we also provide decidability and computability results

    Decisiveness of Stochastic Systems and its Application to Hybrid Models (Full Version)

    Full text link
    In [ABM07], Abdulla et al. introduced the concept of decisiveness, an interesting tool for lifting good properties of finite Markov chains to denumerable ones. Later, this concept was extended to more general stochastic transition systems (STSs), allowing the design of various verification algorithms for large classes of (infinite) STSs. We further improve the understanding and utility of decisiveness in two ways. First, we provide a general criterion for proving decisiveness of general STSs. This criterion, which is very natural but whose proof is rather technical, (strictly) generalizes all known criteria from the literature. Second, we focus on stochastic hybrid systems (SHSs), a stochastic extension of hybrid systems. We establish the decisiveness of a large class of SHSs and, under a few classical hypotheses from mathematical logic, we show how to decide reachability problems in this class, even though they are undecidable for general SHSs. This provides a decidable stochastic extension of o-minimal hybrid systems. [ABM07] Parosh A. Abdulla, Noomene Ben Henda, and Richard Mayr. 2007. Decisive Markov Chains. Log. Methods Comput. Sci. 3, 4 (2007).Comment: Full version of GandALF 2020 paper (arXiv:2001.04347v2), updated version of arXiv:2001.04347v1. 30 pages, 6 figure

    Finite Bisimulations for Dynamical Systems with Overlapping Trajectories

    Get PDF
    Having a finite bisimulation is a good feature for a dynamical system, since it can lead to the decidability of the verification of reachability properties. We investigate a new class of o-minimal dynamical systems with very general flows, where the classical restrictions on trajectory intersections are partly lifted. We identify conditions, that we call Finite and Uniform Crossing: When Finite Crossing holds, the time-abstract bisimulation is computable and, under the stronger Uniform Crossing assumption, this bisimulation is finite and definable

    Monotonic Abstraction Techniques: from Parametric to Software Model Checking

    Full text link
    Monotonic abstraction is a technique introduced in model checking parameterized distributed systems in order to cope with transitions containing global conditions within guards. The technique has been re-interpreted in a declarative setting in previous papers of ours and applied to the verification of fault tolerant systems under the so-called "stopping failures" model. The declarative reinterpretation consists in logical techniques (quantifier relativizations and, especially, quantifier instantiations) making sense in a broader context. In fact, we recently showed that such techniques can over-approximate array accelerations, so that they can be employed as a meaningful (and practically effective) component of CEGAR loops in software model checking too.Comment: In Proceedings MOD* 2014, arXiv:1411.345

    An Application of the Feferman-Vaught Theorem to Automata and Logics for<br> Words over an Infinite Alphabet

    Full text link
    We show that a special case of the Feferman-Vaught composition theorem gives rise to a natural notion of automata for finite words over an infinite alphabet, with good closure and decidability properties, as well as several logical characterizations. We also consider a slight extension of the Feferman-Vaught formalism which allows to express more relations between component values (such as equality), and prove related decidability results. From this result we get new classes of decidable logics for words over an infinite alphabet.Comment: 24 page

    Kleene-SchĂĽtzenberger and BĂĽchi Theorems for Weighted Timed Automata

    Get PDF
    In 1994, Alur and Dill introduced timed automata as a simple mathematical model for modelling the behaviour of real-time systems. In this thesis, we extend timed automata with weights. More detailed, we equip both the states and transitions of a timed automaton with weights taken from an appropriate mathematical structure. The weight of a transition determines the weight for taking this transition, and the weight of a state determines the weight for letting time elapse in this state. Since the weight for staying in a state depends on time, this model, called weighted timed automata, has many interesting applications, for instance, in operations research and scheduling. We give characterizations for the behaviours of weighted timed automata in terms of rational expressions and logical formulas. These formalisms are useful for the specification of real-time systems with continuous resource consumption. We further investigate the relation between the behaviours of weighted timed automata and timed automata. Finally, we present important decidability results for weighted timed automata

    Rational semimodules over the max-plus semiring and geometric approach of discrete event systems

    Get PDF
    We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule S^n over a semiring S is rational if it has a generating family that is a rational subset of S^n, S^n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (union, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.Comment: 24 pages, 9 postscript figures; example in section 4.3 expande
    • …
    corecore