2,461 research outputs found

    A Systematic Review of Learning based Notion Change Acceptance Strategies for Incremental Mining

    Get PDF
    The data generated contemporarily from different communication environments is dynamic in content different from the earlier static data environments. The high speed streams have huge digital data transmitted with rapid context changes unlike static environments where the data is mostly stationery. The process of extracting, classifying, and exploring relevant information from enormous flowing and high speed varying streaming data has several inapplicable issues when static data based strategies are applied. The learning strategies of static data are based on observable and established notion changes for exploring the data whereas in high speed data streams there are no fixed rules or drift strategies existing beforehand and the classification mechanisms have to develop their own learning schemes in terms of the notion changes and Notion Change Acceptance by changing the existing notion, or substituting the existing notion, or creating new notions with evaluation in the classification process in terms of the previous, existing, and the newer incoming notions. The research in this field has devised numerous data stream mining strategies for determining, predicting, and establishing the notion changes in the process of exploring and accurately predicting the next notion change occurrences in Notion Change. In this context of feasible relevant better knowledge discovery in this paper we have given an illustration with nomenclature of various contemporarily affirmed models of benchmark in data stream mining for adapting the Notion Change

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Concept Drift Detection in Data Stream Mining: The Review of Contemporary Literature

    Get PDF
    Mining process such as classification, clustering of progressive or dynamic data is a critical objective of the information retrieval and knowledge discovery; in particular, it is more sensitive in data stream mining models due to the possibility of significant change in the type and dimensionality of the data over a period. The influence of these changes over the mining process termed as concept drift. The concept drift that depict often in streaming data causes unbalanced performance of the mining models adapted. Hence, it is obvious to boost the mining models to predict and analyse the concept drift to achieve the performance at par best. The contemporary literature evinced significant contributions to handle the concept drift, which fall in to supervised, unsupervised learning, and statistical assessment approaches. This manuscript contributes the detailed review of the contemporary concept-drift detection models depicted in recent literature. The contribution of the manuscript includes the nomenclature of the concept drift models and their impact of imbalanced data tuples

    Collaborative data stream mining in ubiquitous environments using dynamic classifier selection

    Full text link
    In ubiquitous data stream mining applications, different devices often aim to learn concepts that are similar to some extent. In these applications, such as spam filtering or news recommendation, the data stream underlying concept (e.g., interesting mail/news) is likely to change over time. Therefore, the resultant model must be continuously adapted to such changes. This paper presents a novel Collaborative Data Stream Mining (Coll-Stream) approach that explores the similarities in the knowledge available from other devices to improve local classification accuracy. Coll-Stream integrates the community knowledge using an ensemble method where the classifiers are selected and weighted based on their local accuracy for different partitions of the feature space. We evaluate Coll-Stream classification accuracy in situations with concept drift, noise, partition granularity and concept similarity in relation to the local underlying concept. The experimental results show that Coll-Stream resultant model achieves stability and accuracy in a variety of situations using both synthetic and real world datasets
    • …
    corecore