9,358 research outputs found

    Towards Hybrid Cloud-assisted Crowdsourced Live Streaming: Measurement and Analysis

    Full text link
    Crowdsourced Live Streaming (CLS), most notably Twitch.tv, has seen explosive growth in its popularity in the past few years. In such systems, any user can lively broadcast video content of interest to others, e.g., from a game player to many online viewers. To fulfill the demands from both massive and heterogeneous broadcasters and viewers, expensive server clusters have been deployed to provide video ingesting and transcoding services. Despite the existence of highly popular channels, a significant portion of the channels is indeed unpopular. Yet as our measurement shows, these broadcasters are consuming considerable system resources; in particular, 25% (resp. 30%) of bandwidth (resp. computation) resources are used by the broadcasters who do not have any viewers at all. In this paper, we closely examine the challenge of handling unpopular live-broadcasting channels in CLS systems and present a comprehensive solution for service partitioning on hybrid cloud. The trace-driven evaluation shows that our hybrid cloud-assisted design can smartly assign ingesting and transcoding tasks to the elastic cloud virtual machines, providing flexible system deployment cost-effectively

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario
    corecore