49 research outputs found

    Rapid Polymer Prototyping for Low Cost and Robust Microrobots

    Get PDF
    The Rapid Microrobot Prototyping (RaMP) Process uses Loctite(R) photo-patternable polymer products and photolithography to rapidly fabricate robust, inexpensive, and compliant robots. The process is developed and examined on two size scales. On the size scale of several centimeters, two functional robots and a small gripper have been designed and demonstrated with shape memory alloy (SMA) used for actuation. The gripper is 1.2g and costs 3.21whiletheinchwormrobotis7.4gandcosts3.21 while the inchworm robot is 7.4g and costs 7.76 in small numbers. The second robot costs $14.93 in small numbers. On the sub-centimeter scale, designs and considerations for a walking microrobot fabricated with the process and its control are fully described. The design and kinematics of a thermally actuated, one degree of freedom leg for the microrobot are developed and simulated. Several of these units could be combined to rapidly build a 30 mg functional and simple walking microrobot with the ability to lift several grams

    Piezoelectric MEMS Linear Motor for Nanopositioning Applications

    Get PDF
    This paper reports the design, fabrication, and performance of piezoelectric bidirectional conveyors based on microelectromechanical systems (MEMS) and featuring 3D-printed legs in bridge resonators. The structures consisted of aluminum-nitride (AlN) piezoelectric film on top of millimeter-sized rectangular thin silicon bridges and two electrode patches. The position and size of the patches were analytically optimized for travelling or standing wave generation, while the addition of 3D-printed legs allowed for a controlled contact and amplified displacement, a further step into the manufacturing of efficient linear motors. Such hybrid devices have recently demonstrated the conveyance of sliders of several times the motor weight, with speeds of 1.7 mm/s by travelling waves generated at 6 V and 19.3 kHz. In this paper both travelling and standing wave motors are compared. By the optimization of various aspects of the device such as the vibrational modes, leg collocation and excitation signals, speeds as high as 35 mm/s, and payloads above 10 times the motor weight were demonstrated. The devices exhibited a promising positional resolution while actuated with only a few sinusoidal cycles in an open-loop configuration. Discrete steps as low as 70 nm were measured in the conveyance of 2-mg sliders

    Power-Scavenging MEMS Robots

    Get PDF
    This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was identified. It also was determined that the actuator-wing configuration with maximum deflection and surface area yet minimum mass had the greatest lift-to-weight ratio. Powered testing results showed that the microrobots successfully scavenged power from a remote 660-nm laser. These microrobots also demonstrated rapid downward flapping, but none achieved flight. The results show that the microrobots were too heavy and lacked sufficient wing surface area. It was determined that a successfully flying microrobot can be achieved by adding a robust, light-weight material to the optimum actuator-wing configuration—similar to insect wings. The ultimate objective of the flying microrobot project is an autonomous, fully maneuverable flying microrobot that is capable of sensing and acting upon a target. Such a microrobot would be capable of precise lethality, accurate battle-damage assessment, and successful penetration of otherwise inaccessible targets

    Silicon and Polymer Components for Microrobots

    Get PDF
    This dissertation presents the characterization and implementation of the first microfabrication process to incorporate high aspect ratio compliant polymer structures in-plane with traditional silicon microelectromechanical systems (MEMS). This discussion begins with in situ mechanical characterization of microscale polymer springs using silicon-on-insulator-MEMS (SOI-MEMS). The analysis compares microscale samples that were tested on-chip with macroscale samples tested using a dynamic mechanical analyzer. The results describe the effect of the processing steps on the polymer during fabrication and help to guide the design of mechanisms using polymers. Characterization of the dielectric breakdown of polymer thin films with thicknesses from 2 to 14 μm between silicon electrodes was also performed. The results demonstrate that there is a strong dependence of the breakdown field on both the electrode gap and shape. The breakdown fields ranged from 250 V/μm to 635 V/μm, depending on the electrode geometry and gap, approaching 10x the breakdown fields for air gaps of the same size. These materials were then used to create compliant all-polymer thermal and electrostatic microactuators. All-polymer thermal actuators demonstrated displacements as large at 100 μm and forces as high as 55 μN. A 1 mm long electrostatic dielectric elastomer actuator demonstrated a tip displacement as high as 350 μm at 1.1 kV with a electrical power consumption of 11μW. The actuators are fabricated with elastomeric materials, so they are very robust and can undergo large strains in both tension and bending and still operate once released. Finally, the compliant polymer and silicon actuators were combined in an actuated bio-inspired system. Small insects and other animals use a multitude of materials to realize specific functions, including locomotion. By incorporating compliant elastomer structures in-plane with traditional silicon actuators, compact energy storage systems based on elastomer springs for small jumping robots were demonstrated. Results include a 4 mm x 4 mm jumping mechanism that has reached heights of 32 cm, 80x its own height, and an on-chip actuated mechanism that has been used to propel a 1.4mg projectile over 7 cm
    corecore