1,693 research outputs found

    Literature Review on IOT Based Smart Security and Monitoring Devices for Agriculture

    Get PDF
    A smart way of automating farming process can be called as Smart Agriculture. By implying an automated system it possible to eliminate threats to the crops by reducing the human intervention. The major emphasize will be on providing favorable atmosphere for plants. These agricultural automated systems will help in managing and maintain safe environment especially the agricultural areas. Environment real time monitoring is an important factor in smart farming. Graphical User Interface based software will be provided to control the hardware system and the system will be entirely isolated environment, equipped with sensors like temperature sensor, humidity sensor. The controllers will be managed by a master station which will communicate with the human interactive software. The system will provide smart interface to the farmers. This smart system can increase the level of production than the current scenario. This system will realize smart solution for agriculture and efficientlysolve the issues related to farmers. The environment will not be the barrier for production and growth of any plant and can overcome the problem of scarcity of farming production

    Utilization of Internet of Things and wireless sensor networks for sustainable smallholder agriculture

    Get PDF
    Agriculture is the economy’s backbone for most developing countries. Most of these countries suffer from insufficient agricultural production. The availability of real-time, reliable and farm-specific information may significantly contribute to more sufficient and sustained production. Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such information to these levels. The tools must address details of spatial and temporal variability. The Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect. This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted. We explore the type and purpose of agricultural parameters, study and describe available resources, needed skills and technological requirements that allow sustained deployment of IoT and WSN technology. Our findings reveal significant gaps in utilization of the technology in the context of smallholder farm practices caused by social, economic, infrastructural and technological barriers. We also identify a significant future opportunity to design and implement affordable and reliable data acquisition tools and frameworks, with a possible integration of citizen science

    Greenhouse Monitoring and Automation Using Arduino: a Review on Precision Farming and Internet of Things (IoT)

    Get PDF
    The 21st century became the beginning of the development of information technology, where one of the revolutions was the presence of the Internet of Things. Internet of Things or abbreviated as IoT is a technology that combines electronic devices, sensors, and the internet to manage data and applications. The Internet of Things can be adopted in agriculture for crop management as a media for monitoring and controlling, especially in greenhouses and is called Precision Farming. The application of precision farming will be more effective in a greenhouse because it is easier to engineer similar environmental conditions. IoT development in greenhouses is using Arduino Microcontroller or Raspberry Pi Microcomputer. These devices are used because the price is low and easy to get on the market and can be designed so that technicians who have limited information technology knowledge can run it. To be able to manage greenhouses with IoT requires sensors as five senses that can detect changes that occur in the greenhouse. By using sensors, the hardware can detect what is happening in the greenhouse and make decisions based on the data acquired. Some sensors that are often used in Precision Farming are temperature and humidity sensors, soil moisture sensors, and light sensors. In the Internet of Things, the data that has been acquired by the hardware will then be transmitted wirelessly. The wireless connections used are Bluetooth, ZigBee Protocol, and Wi-Fi, where Bluetooth and Zigbee connections have a short distance between 10 - 100 meters, while Wi-Fi has a longer distance especially when connected to the Internet. The purpose of this paper is to understand the advantages and challenges of adopting IoT-based Precision Farming for monitoring and automation

    Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis

    Get PDF
    Smart Farming (SF) is an emerging technology in the current agricultural landscape. The aim of Smart Farming is to provide tools for various agricultural and farming operations to improve yield by reducing cost, waste, and required manpower. SF is a data-driven approach that can mitigate losses that occur due to extreme weather conditions and calamities. The influx of data from various sensors, and the introduction of information communication technologies (ICTs) in the field of farming has accelerated the implementation of disruptive technologies (DTs) such as machine learning and big data. Application of these predictive and innovative tools in agriculture is crucial for handling unprecedented conditions such as climate change and the increasing global population. In this study, we review the recent advancements in the field of Smart Farming, which include novel use cases and projects around the globe. An overview of the challenges associated with the adoption of such technologies in their respective regions is also provided. A brief analysis of the general sentiment towards Smart Farming technologies is also performed by manually annotating YouTube comments and making use of the pattern library. Preliminary findings of our study indicate that, though there are several barriers to the implementation of SF tools, further research and innovation can alleviate such risks and ensure sustainability of the food supply. The exploratory sentiment analysis also suggests that most digital users are not well-informed about such technologies

    Smart agriculture management system using internet of things

    Get PDF
    In the world of digital era, an advance development with internet of things (IoT) were initiated, where devices communicate with each other and the process are automated and controlled with the help of internet. An IoT in an agriculture framework includes various benefits in managing and monitoring the crops. In this paper, an architectural framework is developed which integrates the internet of things (IoT) with the production of crops, different measures and methods are used to monitor crops using cloud computing. The approach provides real-time analysis of data collected from sensors placed in crops and produces result to farmer which is necessary for the monitoring the crop growth which reduces the time, energy of the farmer. The data collected from the fields are stored in the cloud and processed in order to facilitate automation by integrating IoT devices. The concept presented in the paper could increase the productivity of the crops by reducing wastage of resources utilized in the agriculture fields. The results of the experimentation carried out presents the details of temperature, soil moisture, humidity and water usage for the field and performs decision making analysis with the interaction of the farmer

    An Integrative Decision Support Model for Smart Agriculture Based on Internet of Things and Machine Learning

    Get PDF
    The Internet of Things (IoT) has achieved an upset in a considerable lot of the circles of our current lives, like automobile, medical services offices, home automation, retail, ed-ucation, manufacturing, and many more. The Agriculture and Farming ventures signifi-cantly affect the acquaintance of the IoT with the world. Machine learning (ML) is a part of artificial intelligence (AI) that permits software applications to turn out to be more precise at foreseeing results without being expressly customized to do as such. It uses historical data as input to predict new result values. In the event, a specific industry has sufficient recorded information to help the machine "learn", AI or ML can create out-standing outcomes. Farming is likewise one such important industry profiting and ad-vancing from machine learning at large. ML can possibly add to the total lifecycle of farming, at all phases. This incorporates computer vision, automated irrigation, and harvesting, predicting the soil, weather, temperature, moisture values, and robots for picking off the crude harvest. In this paper, I'll work on a smart agricultural information monitoring framework that gathers the necessary information from the IoT sensors set in the field, measures it, and drives it, from where it streams to store in the cloud space. The information is then shipped off the prediction module where the necessary analysis is done using ML algorithms and afterward sent to the UI for its corresponding applica-tion

    Precision Agriculture for Water Management Using IOT

    Get PDF
    In the territory of agriculture, proper use of irrigation is important and it is well known that irrigation by drip approach is very cost effective and efficient.Role of agriculture in the development of agricultural country is very important. The freshly come up wireless sensor network (WSN) technology has growing rapidly into distinct multi-disciplinary fields. Agriculture and farming is one of the management which have freshly switch their consideration to WSN, curious this cost adequate technology to improve its production and boost agriculture yield definitive. The outlook of this paper is to design and develop an agricultural monitoring system using wireless sensor network and IOT to enlarge the productivity and quality of farming without penetrating it for all the time manually. Temperature, humidity and water levels are the most important circumstances for the productivity, growth, and quality of plants in agriculture. The temperature, humidity and water level sensors are set up to cluster the temperature and humidity values. One of the most stimulating fields having an exotic need of decision support systems is Precision Agriculture (PA). Through sensor networks, agriculture can be associated to the IoT, with the help of this approach which provides real-time information about the lands and crops that will help farmers make right decisions. The primary influence is implementation of WSN in Precision Agriculture (PA) with the help of IoT which will enhance the usage of water, fertilizers while expand the yield of the crops and also notifications are sent to farmers mobile periodically. The farmers can able to monitor the field conditions from anywhere
    corecore